LECTURE

Supplement to

Global navigation satellite systems (GNSS)

Zuzana Bělinová

Recapitulation Satellite navigation systems

Zuzana Bělinová

History of satellite navigation – USA

USA

- 1960 TRANSIT system, 5 satellites, <u>Doppler effect</u>, without clocks, fix once per hour,
- 1960 proposal for MOSAIC system (3D LORAN), following study Project 57 (1963) formed basics for GPS. Further study Project 621B
- 1974 first atomic clock on the 3rd satellite of the Timation project
- <u>1974</u> Navstar concept (based on previous research)
- Till 1989 test satellites, 1989 first satellite of the GNSS system, 24 satellites launched till 1994 – complete constellation
- 1994 Navstar-GPS system in operation (uses WGS84)
- Uses CDMA for navigation signal transmission

Zuzana Bělinová

History of satellite navigation – SSSR

SSSR

- CIKADA, Doppler effect, without clock, fix once per hour,
- GLONASS, similar to Navstar-GPS, development from 1976,
- 1984 first satellites launched
- Global coverage 1991, 1995 full constellation, afterwards period of non function, since 2010 fully functional (21/24 satellites in operation)
- Uses PZ-90 system (Parametry Zemli 1990)
- Uses FDMA

Zuzana Bělinová

History of satellite navigation - Europe

Europe

- LOCSTAR not-realized (ends 1991, plan of using 4 satellites of GOSTAR project and launch more)
- **GRANAS** (Global Radio Navigation Satellite), notrealized. Concept more simple then GPS
- NAVSAT not-realized, plan using GRANAS and NAVSTAR,
- EUTELTRACS European mutation OMNITRACS. For mobile communication. Uses telecommunication EUTELSAT satellites.
- **GALILEO** future navigation system of the European union (now 6 satellites in orbit)
 - Expected in operation 2020?
 - In full constellation 30 satellites (27 navigation, 3 spares)

Zuzana Bělinová

History of satellite navigation – Asia

China

- COMPASS 35 satellites planned.(5 satellites geostationary, 27 Medium Earth Orbit, 3 IGSO (I GSO).
- Now app. 19 satellites in orbit (2015)
- Expected in operation in 2020
- Japan
 - QZSS (Quasi Zenith Satellite System in Japan)
 - under development, 3 satellites planned
 - First satellite "Michibiki" launched 11. September 2010
 - Full operation planned for 2017

Other

 E.g. Plan for local satellite navigation system in India, etc.

Architecture – Navstar-GPS

- Global positioning system for positioning anywhere on Earth
- Uses telemetric method for positioning
- Consists of 3 segments
 - cosmic,
 - control,
 - user.

Zuzana Bělinová

Architecture – Navstar-GPS

Cosmic segment

- Consists of 24 satellites, altitude 20 190 km, in 6 orbits
- satellites complete an orbit in 11 h 58 min, speed 3,8 km/s
- Key NAVSTAR satellites components:
 - 3 or 4 very accurate (10⁻¹³s) atomic clocks with rubidium (formerly cesium oscilator)
 - 12 RHCP antennas for transmission radar codes in the L-band (2000-1000 MHz)
 - Antennas for communication with earth control stations in the Sband (2204,4 MHz)
 - Antennas for mutual satellites communication in the UHF band
 - Optic, x-ray and pulse electromagnetic detectors and sensors for detection of missiles launch and nuclear blasts
 - Solar panels and batteries as the energy source

Architecture – Navstar-GPS

Control segment

- Main control station (MCS) located in Colorado Springs
 - MCS communicates / controls the satellites, counts orbiting parameters, clock parameters, variations (ionosferic refraction) and sends them to the satellites
- monitoring stations delivering data to MCS

Zuzana Bělinová

Error sources

Approximate values

- Ionosphere propagation 4,0-10 m
- Troposphere propagation 0,7 m
- Clock inaccuracies
 2,0 m
- Noise 0,5 m
- Efemerids 2,1 m
- Calculation, rounding errors 0,5 m
- Multipath effect 1,0 m

Total error may be up to 15 m