Spectrum of periodical signals (Fourier analysis and synthesis)

Signals and codes (SK)

Department of Transport Telematics Faculty of Transportation Sciences, CTU in Prague

Exercise 2

Exercise content

- Computing spectrum of periodical signals using Fourier series
- Fourier analysis
- Fourier synthesis
- Plotting the spectrum
- Influence of sampling

Exercises

Exercise 02_1: Spectrum of a signal composed of sinusoids

Consider following continuous time signal with fundamental frequency $f_{0}=100 \mathrm{~Hz}$
$x(t)=4+4 \cos \left(2 \pi \cdot f_{0} t\right)+3 \cos \left(2 \pi \cdot 2 f_{0} t+\frac{\pi}{4}\right)+3 \sin \left(2 \pi \cdot 3 f_{0} t\right)+2.5 \cos \left(2 \pi \cdot 5 f_{0} t-\frac{\pi}{4}\right)$
a) Perform Fourier analysis to obtain Fourier coefficients \{ak\} from signal $x(t)$
b) Perform Fourier synthesis to obtain signal $\mathrm{x} 2(\mathrm{t})$ from Fourier coefficients \{ak\}
c) Create MATLAB script that plots the following 4 plots adjacently

1. Original signal $\mathrm{x}(\mathrm{t})$.
2. Magnitudes of Fourier coefficients \{ak\} (i.e. Magnitude spectrum)
3. Phases of Fourier coefficients \{ak\} (i.e. Phase spectrum)
4. Synthesized signal $x 2(\mathrm{t})$
d) Compare the results to the spectrum computed by hand using inverse Euler formulas
e) Observe what happens, if the signal is not sufficiently sampled
```
Help: use figure('Position', [100, 100, 1300, 500]); %defining position of corners of the figure
subplot(1,4,2) %defining the matrix of plots - 1 row and 4 columns, 2nd plot will apply
stem([-n*f0:f0:0 f0:f0:n*f0] , ak_abs); %for active plot this will be drawn
```


Exercises

Exercise 02_2: Spectrum of the rectangular signal with parametric duty cycle

 (duty cycle in Czech: střída)Consider continuous time signal with fundamental period $T_{0}=10 \mathrm{~ms}$ defined as

$$
x(t)=\left\{\begin{array}{l}
1 \ldots 0 \leq t<\text { duty_cycle } \cdot T_{0} \\
0 \ldots \text { duty_cycle } \cdot T_{0} \leq t<T_{0}
\end{array}\right.
$$

The values of duty_cycle are considered within interval $\langle 0,1\rangle$.
a) Solve the subtasks a) to c) from the first exercise by modifying the respective Matlab code. Consider first 10 harmonics.
b) Start with duty_cycle $=0.5$ and compare the results with lecture 03, Ex.3_8
c) Observe the results for the following values of duty_cycle
a) duty_cycle $=0$ vs. duty_cycle $=1$
b) duty_cycle $=0.1$ vs. duty_cycle $=0.9$
c) duty_cycle $=0.2$ vs. duty_cycle $=0.8$

Exercises

Exercise 02_3: Spectrum of the rectangular signal with fixed $t_{\text {on }}$ and increasing $t_{\text {off }}$

Consider continuous time signal with fundamental period $T_{0}=50 \mathrm{~ms}$ defined as

$$
x(t)=\left\{\begin{array}{l}
1 \ldots 0.00 \leq t<0.01 \mathrm{~s} \\
0 \ldots 0.01 \leq t<0.05 \mathrm{~s}
\end{array}\right.
$$

The values of duty_cycle are considered within interval $\langle 0,1\rangle$.
a) Solve the subtasks a) to c) from the first exercise by modifying the respective Matlab code. Consider 20 harmonics.
b) Perform Fourier analysis and synthesis with a modification: compute $T_{0} \cdot\left\{a_{k}\right\}$ instead of $\left\{a_{k}\right\}$ alone. When you synthesize the signal, multiply by $\frac{1}{T_{0}}$. Results should have the same shape, just different magnitudes.
c) Now let the same $t_{\text {on }}=0.01 \mathrm{~s}$ and increase $t_{\text {off }}$ from 0.04 s to 0.09 . Modify the number of considered harmonics like $\mathrm{n}=$ round(n*toff/0.05);
d) Do the same with $t_{\text {off }}=0.19 \mathrm{~s}$. You should see further spectrum densification.
e) Imagine $t_{\text {off }} \rightarrow \infty$, you would obtain spectrum of nonperiodic rectangular pulse and the formula for Fourier series $T_{0}\left\{a_{k}\right\}=\int_{-\frac{T_{0}}{2}}^{\frac{T_{0}}{2}} f(t) \mathrm{e}^{-j 2 \pi f_{0} k t} \mathrm{~d} t$ will change into
Fourier transform $\{F(f)\}=\int_{-\infty}^{+\infty} f(t) \mathrm{e}^{-j 2 \pi f t} \mathrm{~d} t$

Exercises

Exercise 02_4: Spectrum of the unknown measured data

Consider the following measured data acquired with the sample frequency fs $=2.5 \mathrm{kHz}$:
$x=[15,17.163,21.501,23.556,20.713,14.635,9.7365,9.1036,11.653,13.164,10.225,3.4337,-3.1257,-5.6373,-4.0616,-2.1353,-3.8667,-9.7796,-16.393,-19.422,-17.725,-$ $14.339,-13.635,-17.243,-22.521,-25,-22.521,-17.243,-13.635,-14.339,-17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-$ $3.1257,3.4337,10.225,13.164,11.653,9.1036,9.7365,14.635,20.713,23.556,21.501,17.163,15,17.163,21.501,23.556,20.713,14.635,9.7365,9.1036,11.653,13.164,10$ $.225,3.4337,-3.1257,-5.6373,-4.0616,-2.1353,-3.8667,-9.7796,-16.393,-19.422,-17.725,-14.339,-13.635,-17.243,-22.521,-25,-22.521,-17.243,-13.635,-14.339,-$ 17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-
$3.1257,3.4337,10.225,13.164,11.653,9.1036,9.7365,14.635,20.713,23.556,21.501,17.163,15,17.163,21.501,23.556,20.713,14.635,9.7365,9.1036,11.653,13.164,10$ $.225,3.4337,-3.1257,-5.6373,-4.0616,-2.1353,-3.8667,-9.7796,-16.393,-19.422,-17.725,-14.339,-13.635,-17.243,-22.521,-25,-22.521,-17.243,-13.635,-14.339,-$ $17.725,-19.422,-16.393,-9.7796,-3.8667,-2.1353,-4.0616,-5.6373,-3.1257,3.4337,10.225,13.164,11.653,9.1036,9.7365,14.635,20.713,23.556,21.501,17.163$]
a) Plot the measured data. How many fundamental periods you see?
b) Find the spectrum of the signal.
c) What happens if you would consider first 50 harmonics?

