
The PDF417 code

Downloaded from: http://grandzebu.net/informatique/codbar-en/pdf417.htm

This code is part of 2 dimensional code family, it's in fact a code with several rows which can encode up to

2700 bytes what explain its name of "Portable Document File". The encoding is done in two stages: first the

data are converted to "codeword" (High level encoding) then those are converted to bars and spaces patterns.

(Low level encoding) Moreover an error correction system with several levels is included, it allows

reconstituting badly printed, erased, fuzzy or torn off data. In the continuation of this talk, the word

"codeword" will be shortened into CW.

The general structure.

 The width of the finest bar is called the module.

 Thereafter a bar module is symbolized by "1" and a space module by "0".

 The code is composed of 3 to 90 rows.

 A row is made of 1 to 30 data columns and its width goes from 90 to 583 modules with the margins.

 Maximum number of CW in bar codes: 928 including 925 for the data. (1 for the length descriptor

and 2 at least for the error correction.)

 If necessary a mechanism named "Macro PDF417" allows distributing more data on several bar

codes.

 There are 929 CW including 900 for the data, they are numbered from 0 to 928.

 The errors correction levels goes from 0 to 8. The correction comprises 2 (on level 0) to 512 (on

level 8) CW.

 The row consists of a start character, a left side CW, 1 to 30 data CW, a right side CW and a stop

character. There must be a white margin of at least 2 modules on each side.

 CW of padding (We'll use by example "900") can be intercalated between data and correction CW,

those must be located at the end.

 First CW indicates CW total number of the code including: data, CW of stuffing and itself but

excluding CW correction.

 Sample of code with 14 data CW, a 15th CW indicate CW number, one padding CW and 4

correction CW. (Level 1)

 S

 t

 a

 L1 D15 D14 R1

 S

 t

 o

 L2 D13 D12 R2

 L3 D11 D10 R3

 L4 D9 D8 R4

 L5 D7 D6 R5

 L6 D5 D4 R6

 L7 D3 D2 R7

 L8 D1 D0 R8

 L9 C3 C2 R9

L10 C1 C0 R10

http://grandzebu.net/informatique/codbar-en/pdf417.htm

 r

 t

 p

D15 = length descriptor (16 in this sample)

D0 = padding

D1 a D14 = data

L1 a L10 = left side CW

R1 a R10 = right side CW

C0 a C3 = error correction, level 1

Low level encoding.

 Each CW is made of 17 modules, containing 4 bars and 4 spaces (Name code comes from there !)

and it start by a bar. Bars and spaces width is 1 to 6 modules. (Except for start and stop characters)

Sample :

that is to say the following formulation : 111 0 1 0 1 000 111 0000

 Start character is : 11111111 0 1 0 1 0 1 000

 Stop character is : 1111111 0 1 000 1 0 1 00 1 (Here there is a 5th bar, thus 18 modules.)

 There are 3 distinct tables for encoding the 929 CW.

 The 3 tables giving the patterns for the 929 CW start like this :

First table Second table Third table

111 0 1 0 1 0 111 000000 11111 0 1 0 1 0 11 00000 11 0 1 0 1 0 11111 00000

1111 0 1 0 1 0 1111 0000 111111 0 1 0 1 0 111 000 111 0 1 0 1 0 111111 000

11111 0 1 0 1 0 11111 00 1111 0 1 0 1 00 1 000000 1 0 1 0 1 00 1111 000000

111 0 1 0 1 00 111 00000 11111 0 1 0 1 00 11 0000 11 0 1 0 1 00 11111 0000

.....

 Each row use only one encoding table, this table will be used again 3 rows further. Sample : Row 1 --

> table 1, row 2 --> table 2, row 3 --> table 3, row 4 --> table 1,etc. We have the formula : table

number = ((row number MOD 3) * 3)

High level encoding.

 Thereafter we'll use operators: + --> addition, x --> multiplication, \ --> integer division, MOD -->

remainder of the integer division.

 Data are compacted into CW according to 3 modes which are conceived according to their efficiency

compared to the data type. Default mode is "Text" mode.

Compaction mode Data to encode Rate compaction

"Byte" ASCII 0 to 255 1.2 byte per CW

"Text" ASCII 9, 10, 13 & 32 a 127 2 characters per CW

"Numeric" Only digits 0 to 9 2.9 digits per CW

 The CW number 900 to 928 have special meaning, some enable to switch between modes in order to

optimise the code.

CW number

:
Function

900 Switch to "Text" mode

901 Switch to "Byte" mode

902 Switch to "Numeric" mode

903 a 912 Reserved

913 Switch to "Octet" only for the next CW

914 a 920 Reserved

921 Initialization

922 Terminator codeword for Macro PDF control block

923
Sequence tag to identify the beginning of optional fields in the Macro PDF control

block

924 Switch to "Byte" mode (If the total number of byte is multiple of 6)

925 Identifier for a user defined Extended Channel Interpretation (ECI)

926 Identifier for a general purpose ECI format

927 Identifier for an ECI of a character set or code page

928 Macro marker CW to indicate the beginning of a Macro PDF Control Block

 The "Text" mode have 4 sub-modes :

o Uppercase

o Lowercase

o Mixed : Numeric and punctuation

o Punctuation

The default sub-mode is "Uppercase", in this sub-mode 2 characters are encoded in each CW, here is

characters tables :

 Value Uppercase Lowercase Mixed Punctuation

0 A a 0 ;

1 B b 1 <

2 C c 2 >

3 D d 3 @

4 E e 4 [

5 F f 5 \

6 G g 6]

7 H h 7 _

8 I I 8 ` (Quote)

9 J j 9 ~

10 K k & !

11 L l CR CR

12 M m HT HT

13 N n , ,

14 O o : :

15 P p # LF

16 Q q - -

17 R r . .

18 S s $ $

19 T t / /

20 U u + �g

21 V v % |

22 W w * *

23 X x = (

24 Y y ^)

25 Z z PUN ?

26 SP SP SP {

27 LOW T_UPP LOW }

28 MIX MIX UPP ' (Apostrophe)

29 T_PUN T_PUN T_PUN UPP

6 switches are included in these tables, they allow to change the sub-mode :

UPP : switch to "Uppercase"

LOW : switch to "Lowercase"

MIX : switch to "Mixed"

PUN : switch to "Punctuation"

T_UPP : switch to "Uppercase" only for next character

T_PUN : switch to "Punctuation" only for next character

Each CW encode 2 characters ; if C1 and C2 are the values of the two characters, CW value is : C1 x

30 + C2

If it remains an alone character, we add to it a padding switch, for instance T_PUN.

Sample, sequence to encode : Super !

S : 18, LOW : 27, u : 20, p : 15, e : 4, r : 17, SPACE : 26, T_PUN : 29, ! : 10

that is 9 characters, we'll add a T_PUN for the padding.

CW1 = 18 x 30 + 27 = 567

CW2 = 20 x 30 + 15 = 615

CW3 = 4 x 30 + 17 = 137

CW4 = 26 * 30 + 29 = 809

CW5 = 10 x 30 + 29 = 329

The sequence is consequently : 567, 615, 137, 809, 329

 The "Byte" mode allows to encode 256 different bytes, that is the entire extended ASCII table.

If the byte number is a multiple of 6, we use the 924 CW to switch to "Byte" mode; if the byte

number is not a multiple of 9 we use 901 CW for switching.

Coding consists has to transform 6 bytes in base 256 to 5 CW in base 900. To carry out the

conversion :

o Take the bytes by group of 6; let X5 to X0 their decimal values. (X0 is the less significant

character)

o Compute the sum S = X5 x 256
5
 + X4 x 256

4
 + X3 x 256

3
 + X2 x 256

2
 + X1 x 256 + X0

o Let's compute the CWs : CW0 = S MOD 900, new value of S : S = S \ 900, CW1 = S MOD

900 ... and so forth to CW4 (CW0 is the less significant CW)

o Bytes which remains after the conversion of the groups of 6 are taken just as they are : 1 byte

= 1 CW of same value.

Sample 1 : word to encode : alcool

The sequence of bytes (in ASCII) is : 97, 108, 99, 111, 111, 108

S = 97 x 256
5
 + 108 x 256

4
 + 99 x 256

3
 + 111 x 256

2
 + 111 x 256 + 108 = 107 118 152 609

644

CW0 = 107 118 152 609 644 MOD 900 = 244

S = 107 118 152 609 644 \ 900 = 119 020 169 566

CW1 = 119 020 169 566 MOD 900 = 766

S = 119 020 169 566 \ 900 = 132 244 632

CW2 = 132 244 632 MOD 900 = 432

S = 132 244 632 \ 900 = 146 938

CW3 = 146 938 MOD 900 = 238

S = 146 938 \ 900 = 163

CW4 = 163 MOD 900 = 163

The sequence including the switch is consequently : 924, 163, 238, 432, 766, 244

Sample 2 : word to encode : alcoolique

The sequence of bytes (in ASCII) is : 97, 108, 99, 111, 111, 108, 105, 113, 117, 101

The first 6 bytes are coded like above and we add 105, 113, 117 and 101

The sequence including the switch is consequently : 901, 163, 238, 432, 766, 244, 105, 113,

117, 101

 The "Numeric" mode is a conversion from base 10 to base 900

To carry out this conversion :

o Take the digits by group of 44 (or less for the rest)

o Add the digit 1 ahead, it will be removed by the decoding procedure

o Make the change of base like for the "Byte" mode

o Each group of 44 digits give 15 CWs

o The smallest groups give a number of CW witch is : Number of digits \ 3 + 1

Sample : 10 digits give 10 \ 3 + 1 = 3 + 1 = 4 CWs

Sample, sequence to encode : 01234

There will be thus 5 \ 3 + 1 = 2 CW

Add a "1" ahead : 101234

CW0 = 101 234 MOD 900 = 434

S = 101 234 \ 900 = 112

CW1 = 112 MOD 900 = 112

The sequence is consequently : 112, 434

 Left and right side CWs are computed according to the table used for the actual row.

To obtain the CW value, make the following calculation: (Row Number \ 3) x 30 + X with X taken

in the following table. (Firts row is row number 0)

Table used to encode

the CWs of this row
X for the left side CW X for the right side CW

1 (Number of rows -1) \ 3 Number of data columns - 1

2
(Security level x 3)

+ (Number of rows -1) MOD 3
(Number of rows -1) \ 3

3 Number of data columns - 1
(Security level x 3)

+ (Number of rows -1) MOD 3

Errors detection and correction.

 Error detection system use 2 CWs and correction system use some between 2 and 510

 The correction system is based on "Reed Solomon" codes which enjoy the math students and terrify

others ...

 The number of CWs to add depend of the correction level used, because of the limit to 928 CWs in a

bar code (1 of which for the sum of CWs) the maximum level is limited by the number of data CWs.

The number of CWs that the error correction algorithm can reconstitute is equal to the number of

CWs required by the correction system: this is not magic but it's mathematical !

Level
Number of CWs required by the correction

system, 2 of which for the detection (2
level + 1

)
Maximum number of data CWs

0 2 925

1 4 923

2 8 919

3 16 911

4 32 895

5 64 863

6 128 799

7 256 671

8 512 415

 The advisable correction level depend on the number of data CWs :

Number of data CWs Advisable level

1 a 40 2

41 a 160 3

161 a 320 4

321 a 863 5

 Reed Solomon codes are based on a polynomial equation where x power is 2
s+1

 with s = error

correction level used. For sample with the level 1 we use an equation like this: a + bx + cx
2
 + dx

3
 +

x
4
 The numbers a, b, c and d are the factors of the polynomial equation.

 For information the equation is : (x - 3)(x - 3
2
)(x - 3

3
).....(x - 3

k
) (with k = 2

s+1
) We develop the

polynomial equation and we apply a MOD 929 on each factor. These factors have been pre-

computed for the 8 equations corresponding to the 8 correction levels. You can see the factors file.

 Rather than to draw the algorithm used to compute the correction CWs, I prefer to provide it to you

in Basic.

Let s the correction level used, k = 2
s+1

 the number of correction CWs, a the factors array, m the

number of data CWs, d the data CWs array and c the correction CWs array. We'll use a temporary

variable t.

c and t are inited with 0. And let's go with the math fiddle :

For i = 0 To m - 1

 t = (d(i) + c(k - 1)) Mod 929

http://www.4i2i.com/reed_solomon_codes.htm
http://grandzebu.net/informatique/codbar/pdf417coef.txt

 For j = k - 1 To 0 Step -1

 If j = 0 Then

 c(j) = (929 - (t * a(j)) Mod 929) Mod 929

 Else

 c(j) = (c(j - 1) + 929 - (t * a(j)) Mod 929) Mod 929

 End If

 Next

Next

For j = 0 To k - 1

 If c(j) <> 0 Then c(j) = 929 - c(j)

Next

Those which have read and understand the Reed Solomon codes will find there ; for the dazed others

who have not understand everything (And me !) it's enough to apply the "recipe" by using the

obtained codes in the reverse order (From last to first).

Bar code making.

Since we can create the bar code pattern it remains us to draw it on the screen and to print it on a paper

sheet. Two approaches are possible:

 The graphic method where each bar is "drawn" as a full rectangle. This method enables to compute

the width of each bar with a one pixel precision and so we can work with widths which are perfect

multiple of the used device pixel. This gives us a good accuracy specially if the device have a low

density as it's the case with screens and inkjet printers. This method requires special programming

routines and does not allow making bar codes with current software.

 The special font in which each character is replaced by a bar code. This method allows the use of any

software like a text processing or a spreadsheet. (For example OpenOffice, the free clone of

MSoffice !) The scale settings according to the selected size can bring away small misshaping of the

bar drawing. With a laser printer there's no probs.

It seems that there's no free bar code PDF417 font on the net. I've decided consequently to draw this font and

to propose it for download. Because there are 929 CWs with 3 alternatives for each one obligate us to divide

the 17 bits of a CW in several parts. But divide by 17 ... hmmm ... a trick is necessary. If we consider that

the first bit is always "1" and the last one "0", we can imagine a separator like "01" and rest is only 15 bits in

each CW; we can then divide these 15 bits into 3 parts. There will be then 2
5
 = 32 possible groups affected

to 32 characters of the font. The encoding software is in charge to transform the 3 groups of each CW into a

3 characters string.

The font will contain thus the following characters:

 Character A (ASCII : 65) to F (ASCII :70) and a (ASCII : 97) to z (ASCII :122) for the 32 groups

having a formula "00000" to "11111"

 Character * (ASCII : 42) for the separator having a formula "01"

 Character + (ASCII : 43) for the row start character without its last 0, formula "11111111 0 1 0 1 0 1

00"

 Character - (ASCII : 45) for the end row character without its first 1, formula "111111 0 1 000 1 0 1

00 1"

The string to send to the printer will look something like this : +*gfA*jhD*BAl*gCt*hjk*- and this for each

row.

The "pdf417.ttf" font

This font contains the 35 patterns describe above. The start row and end row codes embed a 2 modules

margin. The height is equal to 3 modules which is the most current size.

Encoding a pdf417 bar code

The software will evolve with 4 steps :

 Compaction of the data into the CWs by using of the different methods and trying to optimize.

 Calculation of the correction CWs according to the selected security level.

 Splitting by rows and addition of left side and right side CWs.

 Transformation of each CW into a 3 characters string and addition of separators, start row character,

end row character and carriage returns.

Because of the interaction between the different compaction modes and the different sub-modes of the "text"

mode it's difficult to make a 100% optimization. Thus the software will split the string into "parts" having

the type "numeric", "text" or "byte" afterwards it will change some parts for another mode if the overload

due to switch CWs is greater than the compaction gain. We can't make allowance for all the parameters like

padding, gain due to perfect multiple of 6, uni-character switch or the switches between the different sub-

modes of the text mode: one would need for that several thousands of programming lines.

Another difficulty comes from the size of the wielded numbers, for example the "Modulo 900" operation

applied on a 44 digits number generate an unavoidable overload error; the software will have to carry out

this calculation step by step.

