RFID

Contents and form

Petr Bureš, <u>bures@fd.cvut.cz</u> Faculty of transportation sciences Czech technical university in Prague

RFID considerations

Critical performance variables in an RFID system are the following:

- Communication range.
- Size of the information space reserved on the tag.
- Communication rate between tag and reader.
- Anti-collision and the ability of the system to communicate simultaneously with multiple tags.
- Robustness of the communication with respect to interference due to material in the path between the reader and the tag.

RFID considerations

The level of performance that can be achieved in these variables is determined by several factors:

- Legal/regulatory emission levels allowed in the country of use
- Type of tag (with or without a battery included in the tag to assist its communication back to the reader)
- Air interface
 - Frequency of the RF carrier used to carry the information between the tag and the reader.
 - Modulation,
 - Bit encoding
- Commands and responses that address memory in terms of blocks (or words, or pages)

Contents of RFID

- Identification of RFID chips (EPCglobal Tag Data Standard Version <u>1.6</u>)
- RFID chips contains 96 or 64 bit unique number

-> **EPC** = Electronic Product Code

	Header	EPC Manager Number	Object Class	Serial Number
С)1. C)000A89. (00016F.	000247DC0
ŀ	leader El	PC Manager Ol	oject Class	Serial Number
8	3 bits	28 bits	24 bits	36 bits

Form of RFID – a TAG

Figure 5. The features of RFID systems

Discussion

- May I add other data to a TAG?
- How big it is?
- What frequencies shall I use?
- What read ranges do the RFID have?

Communication over the air interface

Frequency choice affects

- Reading range and reading speed
- Tag size (lower frequency = bigger antenna)
- Antenna type, solenoid vs. dipole
- Environmental ruggedness (lower frequency = better)
- Price (higher frequency = higher price)

Band	Unlicensed Frequency	Wavelength	Classical Use	
LF	125–134.2KHz	2,400 meters	Animal tagging and keyless entry	
HF	13.56MHz	22 meters		
UHF	865.5–867.6MHz (Europe) 915MHz (U.S.) 950–956MHz (Japan)	32.8 centimeters	Smart cards, logistics, and item management	
ISM	2.4GHz	12.5 centimeters	Item management	

Table 2.3 Band Frequency, Wavelength, and Classical Usage

Communication over the air interface

Low-and middle frequency ("LF, MF") tags,

- operate in range 30 kHz to 3 MHz. Typically **125 kHz or 134,2 kHz.**
- Wide spread, can be used in bad environmental conditions.
- for short-range uses, like animal identification and anti-theft systems, such as RFID-embedded automobile keys.
- large antenna (solenoid) = cost and size problem

High frequency ("HF") tags.

- operate in range 3 MHz to 30 MHz. Typically at **13.56 MHz.**
- Have higher communication speed (data rate).
- Can be used in bad environmental conditions, but water affects reading range. Read range to 1m
- Used in smart cards in libraries (books), luggage tagging,

Communication over the air interface

Ultra-High Frequency ("UHF") tags

- operate in range 300 MHz to 3 GHz. Typically at 915 MHz (USA) / 868 MHz (Europe) for passive tags. For active also 2,4 GHz
- Have higher communication speed (data rate)
- High reading range of 3m / 10m (in case of 2.4 GHz)
- Susceptible for metal presence, can not be used in humid / water environments.

Microwave Frequency ("SHF, EHF") tags

- operate in range 3 GHz to 300 GHz. Typically at 5,9 GHz (USA) / 5,8 GHz (Europe)
- Have advantages and disadvantages of the above but with greater effect

Read range

- Frequency vs. power vs. antenna (principle)
- Example 1 (900 MHz)
 - At 900 MHz, the wavelength is: $\lambda = 300/f_{MHz} = 0.333$ m
- Example 2 (13.56 MHz)
 - At 13.56 MHz, wavelength of λ = 300/f_{MHz} = 22.1 m,
- Media used
 - Magnetic field (up to $\lambda/2\pi$, near field) inductive coupling
 - Electric field (from 2 λ , far field) back scatter

Far versus near field

- **far-field** = "normal" electromagnetic radiation. The power of this radiation decreases as the square of distance from the antenna.
- near-field, Absorption of radiation in the reactive part <u>affect the</u> <u>load on the transmitter.</u> Magnetic induction can be seen as a very simple model of this type of near-field electromagnetic interaction.

Wiki, and: <u>http://www.drillingcontractor.org/the-abcs-of-rfid-physics-oilfield-usage-14030</u>

Modulation and coding

• Uses binary modulation techniques: ASK, PSK and FSK

Modulation and coding

• Uses different line coding schemes: NRZ, RZ, Manchaster

Data encoding

- ID: 0007820706 119,21922 to binary 11111111
 00101 11000 00000 00000 01111 01111 01010
 01010 10100 00101 0110 0
- START + 10 x (5 bits) + CHCK+ STOP
- 3 groups, we have 2c, followed by 0077(HEX = 119 in decimal), 55A2 (HEX = 21922 in decimal) this corresponds to the 119,21922.

0110 checksum + 0 stop bit

Collision mechanisms

- Detection
- Resolve:
 - ALOHA (200 tags/s)
 - TREE WALKING (1000 tags/s)

Slotted ALOHA protocol (shaded slots indicate collision)

Discussion?

• <u>http://www.simonsothcott.com/2011/11/what-is-rfid-10-examples-of-rfid.html</u>