Barcodes – principle

Identification systems (IDFS)

Department of Control and Telematics Faculty of Transportation Sciences, CTU in Prague

Contents

How does it work?

- Bulls eye code
- PostNet
- 1D Bar code
- 2D Bar code

Bulls eye code

PostNet

1D Bar code

2D Bar code

HOW DOES IT WORK?

Bulls eye code

Bulls eye code

NOTE: LINES 6, 7, 8, AND 9 ARE LESS REFLECTIVE THAN LINES 10.

Bulls eye code

Petr Bureš

K620IDFS

Bulls eye code

Reader output

Bulls eye code

PostNet

1D Bar code

2D Bar code

HOW DOES IT WORK?

page 7

PostNet

PostNet code

Code Elements **Binary Code** Barcode Value Value Numeric Value 74210 74210 mll 00011 ulıl 00101 ulli 00110 ılııl 01001 ılılı 01010 5 ıllıı 6 01100 10001 lıııl luh 10010 lılıı 9 10100 llııı 11000

5-Digit ZIP Code (A Field)

Example D Above Optional Endorsement Line and/or Keyline Information (Acceptable)

Bulls eye code

PostNet

1D Bar code (UPC/EAN/GS1 DataBar/...)

2D Bar code

HOW DOES IT WORK?

CODE 2 of 5

Composition

- Every character of this code, excluding start and stop character, is formed by 5 bars (2 wide + 3 narrow),
- every character is represented by same width in the barcode.
- Parallel spaces between bars have same width (do not cary information)

Character	Bar 1	Bar 2	Bar 3	Bar 4	Bar 5
0	0	0	1	1	0
1	1	0	0	0	1
2	0	1	0	0	1
3	1	1	0	0	0
4	0	0	1	0	1
5	1	0	1	0	0
6	0	1	1	0	0
7	0	0	0	1	1
8	1	0	0	1	0
9	0	1	0	1	0
Start	1	1	0		
Stop	1	0	1		

UPC code

Composition

- The scan able area of every UPC-A barcode follows the pattern
 SLLLLLMRRRRRE, where the S (start), M (middle), and E (end). The L (left) and R (right) sections collectively represent the 12 numerical digits that make each UPC unique.
- The first digit <u>L</u> is the prefix. The last digit <u>R</u> is an error correcting check digit,
- the guard bars, separate the groups of six digits
- L/R = 7 modules, S/E = 3 modules, M = 5 modules total 95 modules of the same width

http://en.wikipedia.org/wiki/Universal_Product_Code

UPC Code

How to read bars?

Each digit: four vertical lines, two black and two white. (7 modules), L and R have reversed values (color)

72 116

Bulls eye code

1D Bar code

2D matrix code (PDF417/DataMatrix/QRCode/...)

HOW DOES IT WORK?

PDF-417

Composition:

- size of the symbol can be modified
- multiple linear bar-codes stacked above
- Symbol = ratio of the widths of the bars and spaces to each other
- maximum of 90 rows and 30 columns
- capable of storing up to 2710 digits (1850 aflanumeric chars, 1108 bytes)

Compaction mode	Datas to encode	Rate compaction
"Byte"	ASCII 0 to 255	1.2 byte per CW
"Text"	ASCII 9, 10, 13 & 32 a 127	2 characters per CW
"Numeric"	Only digits 0 to 9	2.9 digits per CW

2D Barcode PDF-417 with 200 characters

PDF-417

Code word:

- 4 bars and 4 spaces which totals 17 modules in width.
- Each bar and space can be from 1 to 6 modules in length.
- In theory it has 9*929 patterns. Each set of 929 patterns is called a cluster (character set). PDF417 only uses cluster number 0, 3 and 6.
- Adjacent rows use different clusters in the sequence 0, 3, 6, 0, 3, 6

http://grandzebu.net/informatique/codbar-en/pdf417.htm

PDF-417

 The CW number 900 to 928 have special meaning, some enable to switch between modes in order to optimise the code.

CW number :	Function
900	Switch to "Text" mode
901	Switch to "Byte" mode
902	Switch to "Numeric" mode
903 a 912	Reserved
913	Switch to "Octet" only for the next CW
914 a 920	Reserved
921	Initialization
922	Terminator codeword for Macro PDF control block
923	Sequence tag to identify the beginning of optional fields in the Macro PDF control block
924	Switch to "Byte" mode (If the total number of byte is multiple of 6)
925	Identifier for a user defined Extended Channel Interpretation (ECI)
926	Identifier for a general purpose ECI format
927	Identifier for an ECI of a character set or code page
928	Macro marker CW to indicate the beginning of a Macro PDF Control Block

PDF-417

- Start and stop pattern (static and are the same for all barcodes)
- Left and right row indicators (chosen to achieve maximum contrast, also bear row number and error correction level)
- Data and data count (unique for each barcode and represents the encoded

data, numeric,	alpha,)
----------------	--------	---

Error correction codewords (2 min, 510 max)

Start pattern	Left row indicator	Data count	Datawords	Right row indicator	Stop pattern
Start pattern	Left row indicator	Datawords F		Right row indicator	Stop pattern
Start pattern	Left row indicator	Datawords		Right row indicator	Stop pattern
Start pattern	Left row indicator	Datawords	Error correction	Right row indicator	Stop pattern

PDF-417

Example:

- First CW indicates CW total number of the code including: data, CW of stuffing and itself but excluding CW correction.
- Sample of code with 14 data CW, a 15th CW indicate CW number, one padding CW and 4 correction CW. (Level 1)

Structure

- D15 = length descriptor (16 in this sample)
- D0 = padding
- D1 a D14 = data
- L1 a L10 = left side CW
- R1 a R10 = right side CW
- C0 a C3 = error correction, level 1

PDF-417

Example: 4 different character sets:

- Each CW encode 2 characters;
- if C1 and C2 are the values of the two characters, CW value is: C1 x 30 + C2
- If it remains an alone character, we add to it a padding switch, for instance T_PUN.

```
Sample, sequence to encode: Super \, ! S: 18, LOW: 27, u: 20, p: 15, e: 4, r: 17, SPACE: 26, T_PUN: 29, !: 10  that is 9 characters, we'll add a T_PUN for the padding. CW_1 = 18 \times 30 + 27 = 567 CW_2 = 20 \times 30 + 15 = 615 CW_3 = 4 \times 30 + 17 = 137 CW_4 = 26 \times 30 + 29 = 809 CW_5 = 10 \times 30 + 29 = 329 The sequence is consequently: 567, 615, 137, 809, 329
```

Value	Uppercase	Lowercase	Mixed	Punctuation
0	A	a	0	;
1	В	b	1	<
2	С	с	2	>
3	D	d	3	<u>a</u>
4	E	e	4	[
5	F	f	5	\
6	G	g	6]
7	Н	h	7	_
8	I	I	8	` (Quote)
9	J	j	9	~
10	K	k	&	!
11	L	1	CR	CR
12	M	m	HT	HT
13	N	n	,	,
14	0	0	:	:
15	P	р	#	LF
16	Q	q	-	-
17	R	r		
18	S	S	\$	S
19	T	t	/	/
20	U	u	+	g
21	V	v	9⁄0	
22	W	w	*	*
23	X	x	=	(
24	Y	у	٨)
25	Z	z	PUN	?
26	SP	SP	SP	{
27	LOW	T_UPP	LOW	}
28	MIX	MIX	UPP	' (Apostrophe)
29	T_PUN	T_PUN	T_PUN	UPP

PDF-417

 The "Byte" mode allow to encode 256 different bytes, that is the entire extended ASCII table.

```
Sample 1 : word to encode : alcool
  The sequence of bytes (in ASCII) is : 97, 108, 99, 111, 111, 108
S = 97 \times 256^5 + 108 \times 256^4 + 99 \times 256^3 + 111 \times 256^2 + 111 \times 256 + 108 = 107 \times 118 \times 152 \times 156 \times 
 CW_0 = 107 \ 118 \ 152 \ 609 \ 644 \ MOD \ 900 = 244
S = 107 118 152 609 644 \setminus 900 = 119 020 169 566
CW_1 = 119\ 020\ 169\ 566\ MOD\ 900 = 766
S = 119\ 020\ 169\ 566 \setminus 900 = 132\ 244\ 632
CW_2 = 132\ 244\ 632\ MOD\ 900 = 432
S = 132\ 244\ 632\ \ 900 = 146\ 938
CW3 = 146 938 MOD 900 = 238
S = 146938 \setminus 900 = 163
 CW4 = 163 \text{ MOD } 900 = 163
  The sequence including the switch is consequently: 924, 163, 238, 432, 766, 244
                                                                                                                                                           Sample 2 : word to encode : alcoolique
  The sequence of bytes (in ASCII) is : 97, 108, 99, 111, 111, 108, 105, 113, 117, 101
  The first 6 bytes are coded like above and we add 105, 113, 117 and 101
  The sequence including the switch is consequently: 901, 163, 238, 432, 766, 244, 105, 113, 117, 101
```

PDF-417

- Left and right side CWs are computed according to the table used for the actual row.
- To obtain the CW value, make the following calculation: (Row Number \ 3) x 30 + X with X taken in the following table.
- (First row is row number 0)

Table used to encode the CWs of this row	X for the left side CW	X for the right side CW
1	(Number of rows -1) \ 3	Number of data columns - 1
2	(Security level x 3) + (Number of rows -1) MOD 3	(Number of rows -1) \ 3
	Number of data columns 1	(Security level x 3) + (Number of rows -1) MOD 3

Bulls eye code

1D Bar code

2D matrix code (PDF417/DataMatrix/QRCode/...)

HOW DOES IT WORK?

GS1 - DataMatrix

 Composed of two separate parts the <u>finder pattern</u> (to locate the symbol), and the <u>encoded data</u> itself

Finder Pattern

- defines the shape, the size, X-dimension
 Finder pattern
 and the number of rows and columns in the symbol.
- has a function similar to the Auxiliary Pattern in an EAN-13
- The solid dark: "L finder pattern" is used to determine the size, orientation and distortion of the symbol.
- Dashed lines: "Clock Track" defines the basic structure of the symbol and can also help determine its size and distortion.

GS1 - DataMatrix

Symbol structure

Number of rows and columns – variable from 10 to 144 lines

Symbol Size*		Data Region		Matrix Codewords		ords	Maximum Data Capacity		% of codewords used for Error	Max. Correctable Codewords
				Size		Num. Alphanum.		Correction	Error/Erasure	
Row	Col	Size	No.		Data	Error	Сар.	Сар.		
10	10	8x8	1	8x8	3	5	6	3	62.5	2/0
12	12	10x10	1	10x10	5	7	10	6	58.3	3/0
14	14	12x12	1	12x12	8	10	16	10	55.6	5/7
16	16	14x14	1	14x14	12	12	24	16	50	6/9
18	18	16x16	1	16x16	18	14	36	25	43.8	7/11
20	20	18x18	1	18x18	22	18	44	31	45	9/15
22	22	20x20	1	20x20	30	20	60	43	40	10/17

- Example:
 - Symbol size 10x10 + quiet zone 2 = 12 lines/collumns
 - Data part: 8x8 = 8 code words (3 data / 5 error correction)

GS1 - DataMatrix

Symbol structure

- Divided into data regions, matrix 32x32 into 4 14x14 regions
- Data unit 8 bits = code word

Error correction

- Variable, Reed-Solomon error correction
- Calculates complementary codes and add-ins
- Reconstitutes the original encoded data by recalculating the data from the complementary codes and add-ins.
- The recalculation regenerates the original data by locating errors at the time of scanning.

page 25 Petr Bureš K620IDFS

GS1 - DataMatrix

Encoding example: char: "123456"

- Data encoding:
 - The ASCII encoding converts the 6 characters into 3 bytes.
 - 12, 34 and 56 (x+130) = 142 164 186 = 3 data code words
- Error correction: (RS algorithm) 5 error correction code words:

Codeword: Decimal: Hex:

1	2	3
142	164	186
8E	A4	BA

4	5	6	7	8
114	25	5	88	102
72	19	05	58	66

10001110 10100100 10111010 01110010 00011001 00000101 01011000 01100110

GS1 - DataMatrix

10001110 10100100 10111010 01110010 00011001 00000101 01011000 01100110

The final matrix would be:

After colouring the patterns which are numbered 1:

Finally we add the finder pattern to cover the symbol above :

GS1 - DataMatrix

Convert data from ASCII to L-shaped tiles by adding 1 and convert to binary:

Eg Uppercase 'W' = ASCII 87 87 + 1 = 88 = 58 (base 16) = 01011000 (base 2)

0 1 0 1 1 0 0 0 0

Lowercase 'i' = ASCII 105 105 + 1 = 106= 6A (base 16) = 01101010 (base 2)

Start filling grid from 5th row, 1st column

If the tile falls off the edge, put remainder on the opposite side

This shows the first W in position

Confinue placing tiles in zig-zag

This shows the W and the i

Bulls eye code

1D Bar code

2D matrix code (PDF417/DataMatrix/QRCode/...)

HOW DOES IT WORK?

QR code

QR Code — Structure

Model 2005 - ISO/IEC 18004:2006

© 2012 Walter Tuvell

QR code

Symbol structure

Number of rows and columns – variable from 21 to 177 lines.

- Data unit 8 bits = code word
- Format info 2x (encoded BCH)

QR code

© 2012 Walter Tuvell

Structure

QR Code — Layout & Stream-Encoding

Model 2005 — ISO/IEC 18004:2006

Format Info: $2 N_2$; 15 bits \Rightarrow 30 (+1 unused) bits Bits 14-10 are significant; bits 9-0 are derived (EDC); masked/"cooked" → Level (for EDC) 1 unused module; filled with 12 bit Mask (for readability-robustness)

Content * D/E-Codespaces — Stream-Encoding Bit-Placement Principles:

- Encoding Region tiled by codewords; 8 bits; ~2-wide columns; arrow-directed
- Codeword-tiling snakes/zigzags bottom/right-to-top/left, avoiding barriers; block-interleaved (enhances EDC; see ISO/IEC spec, §6.5.5-6, Table 9)
- D/Data-space: Data (prepared/protocol); streamed; masked/"cooked";
- E/EDC-space: EDC; derived from D-space; streamed; remainder modules (if any) filled with 0, bits; masked/"cooked"
- . Boundary between D/E-spaces is determined by the EDC /eve/ in force
- Bit-streaming: MSb-to-LSb/right-to-left, in 2-wide arrow-directed order
- Bit-ordering: m≤n

 bit#m

 bit#m

 bit#m ("≤/less-than"

 "≤/less-significant")

Examples of content bit-streaming * codewords:

QR code

Encoding Data

QR Code — Protocol(s)

Model 2005 — ISO/IEC 18004:2006

D-Space Content (raw/unmasked): Sequence of SDD (Self-Describing Data) segments

Mode Indicator ≜ First 4 bits of SDD segment

```
Native Modes: SDD is TLV (Type/Length/Value)
0001_2=1_{16}\triangleq N[\text{umeric}] - 0-9 \quad \text{(3 chars/digits} \Rightarrow 10 \text{ bits}]
0010_2=2_{16}\triangleq A[\text{lphanumeric}] - 0-9 \quad \text{A-Z} \quad \text{$\ \% \ $^*$ + - . / : [2 \text{ chars} \Rightarrow 11 \text{ bits}]}
0100_2=4_{16}\triangleq B[\text{yte}|\text{inary}] - 00_{16}-\text{ff}_{16} \quad \text{["default"} \sim ISO/IEC 8859-1="Latin-1"; 1 \text{ char} \Rightarrow 8 \text{ bits}]
1000_2=8_{16}\triangleq K[\text{anji}] - \text{Shift JIS X 0208} \quad \text{[see ISO/IEC spec for encoding]}
Type: \text{Character-set (as just indicated, above)}
\text{Length: Count of N/A/B/K chars, base-2 encoded in 8-16 bits:}
```

Length: Count of N/A/B/K chars, base-2 encoded in 8–16 bits:

Versions 1– 9 — N:10 A:9 B:8 K:8

Versions 1– 9 — N:10 A:9 B:8 K:8
Versions 10–26 — N:12 A:11 B:16 K:10
Versions 27–40 — N:14 A:13 B:16 K:12

Value: Standardized, efficient, per-charset encoded bit-stream (as just indicated, above)

-Pad-out partial/final (8-bit) D-codeword with 0, bits (if necessary)

Pad-out D-space with alternating 111011002=ec16 & 000100012=1116 bytes (if necessary)

FNC1 (Function Code 1) Modes: Pre-defined semantics $0101_2 = 5_{16} \triangleq \text{FNC1}$, 1^{st} position — See ISO/IEC spec $1001_2 = 9_{16} \triangleq \text{FNC1}$, 2^{nd} position — See ISO/IEC spec

ECI (Extended Channel Interpretation): General escape hatch (e.g., compression, encryption) $0111_2 = 7_{16}$ — See ISO/IEC spec

Faux Modes: Structural constructs; not "true" modes

0011₂=3₁₆ ≜ Structured-Append — Link ≤16 QR code symbols (see ISO/IEC spec)

0000₂=0₁₆ ≜ Terminator/EOM — Potentially truncated/omitted

© 2012 Walter Tuvell

QR code

Masking data:

QR code

Try it yourself

Petr Bureš K620IDFS

READERS

5. Readers

- A barcode reader (or barcode scanner) is an electronic device for reading printed barcodes. It consists of a light source, a lens and a light sensor translating optical impulses into electrical ones.
- Additionally, nearly all readers contain decoder analyzing the barcode's image data provided by the sensor and sending the barcode's content to the scanner's output port.

5. Readers

Types of barcode readers:

- Pen-type readers
- Laser scanners
- CCD readers
- Camera-based readers
- Omni-directional barcode scanners
- Cell phone cameras
- 3D scanners

BENEFITS

6. Benefits

- Can provide detailed up-to-date information on the business, accelerating decisions and with more confidence. For example:
 - Fast-selling items can be identified quickly and automatically reordered.
 - Slow-selling items can be identified, preventing inventory build-up.
 - The effects of merchandising changes can be monitored, allowing fastmoving, more profitable items to occupy the best space,
 - Historical data can be used to predict seasonal fluctuations
 - Items may be repriced on the shelf to reflect price increases.
 - This technology also enables the profiling of individual consumers,
 typically through a voluntary registration of discount cards.
- Besides sales and inventory tracking, barcodes are very useful in logistics.

5. References

- History of development of barcode http://www.barcoding.com/information/barcode history.shtml
- Interviews with inventors http://idhistory.com/videodirectory.html
- Barcodes specification http://www.tec- it.com/en/support/knowbase/symbologies/Default.aspx
- Summary of barcodes http://en.wikipedia.org/wiki/Barcode
- Collection of information about barcodes http://www.adams1.com/newspage.html
- Changing color barcode http://2d-code.co.uk/4d-barcodes/
- All about QR codes http://www.denso-wave.com/qrcode/, en.wikipedia.org/wiki/QR code