Barcodes - principle

Identification systems (IDFS)

Department of Control and Telematics
Faculty of Transportation Sciences, CTU in Prague

Contents

How does it work?

- Bulls eye code
- PostNet
- 1D Bar code
- 2D Bar code

Bulls eye code
PostNet
1D Bar code
2D Bar code

HOW DOES IT WORK?

2. How does it work

Bulls eye code

- Bulls eye code

NOTE: LINES $6,7,8$, AND 9 ARE LESS REFLECTIVE THAN LINES 10.

2. How does it work

Bulls eye code

FIG. 2

FIG. 6

FIG. 3

FIG. 4

FIG. 5

FIG. 7

FIG. 8

FIG. 9

2. How does it work

Bulls eye code

- Reader output

Bulls eye code PostNet

1D Bar code
2D Bar code

HOW DOES IT WORK?

2. How does it work

PostNet

- PostNet code

5-Dlglt ZIP Code (A Fleld)

Numeric Value	$\begin{aligned} & \text { Binary Code } \\ & \text { Valus } \\ & 74210 \end{aligned}$	Bratede Velue 74210 74210
1	00011	IIII
2	00101	inlil
3	00110	IIll
4	01001	Ilıl
5	01010	Ilin
6	01100	${ }_{\text {Illı }}$
7	10001	linl
8	10010	linlı
9	10100	lılı
0	11000	IIIII

Bulls eye code
PostNet
1D Bar code (UPC/EAN/GS1 DataBar/...)
2D Bar code

HOW DOES IT WORK?

2. How does it work?

CODE 2 of 5

Composition

- Every character of this code, excluding start and stop character, is formed by 5 bars (2 wide +3 narrow),
- every character is represented by same width in the barcode.
- Parallel spaces between bars have same width (do not cary information)

Character	Bar 1	Bar 2	Bar 3	Bar 4	Bar 5
0	0	0	1	1	0
1	1	0	0	0	1
2	0	1	0	0	1
3	1	1	0	0	0
4	0	0	1	0	1
5	1	0	1	0	0
6	0	1	1	0	0
7	0	0	0	1	1
8	1	0	0	1	0
9	0	1	0	1	0
Start	1	1	0		
Stop	1	0	1		

2. How does it work?

UPC code

Composition

- The scan able area of every UPC-A barcode follows the pattern SLLLLLLMRRRRRRE, where the S (start), M (middle), and E (end). The L (left) and R (right) sections collectively represent the 12 numerical digits that make each UPC unique.
- The first digit $\underline{\underline{L}}$ is the prefix. The last digit \underline{R} is an error correcting check digit,
- the guard bars, separate the groups of six digits
- $\mathrm{L} / \mathrm{R}=7$ modules, $\mathrm{S} / \mathrm{E}=3$ modules, $\mathrm{M}=5$ modules total 95 modules of the same width

http://en.wikipedia.org/wiki/Universal Product Code

2. How does it work UPC Code

How to read bars?

- Each digit: four vertical lines, two black and two white. (7 modules), L and R have reversed values (color)

odd parity
s 6543210 number

Bulls eye code
1D Bar code
2D matrix code (PDF417/DataMatrix/QRCode/...)

HOW DOES IT WORK?

2. How does it work
 PDF-417

Composition:

- size of the symbol can be modified
- multiple linear bar-codes stacked above
- Symbol = ratio of the widths of the bars and spaces to each other
- maximum of 90 rows and 30 columns
- capable of storing up to 2710 digits (1850 aflanumeric chars, 1108 bytes)

Compaction mode	Datas to encode	Rate compaction
"Byte"	ASCII 0 to 255	1.2 byte per CW
"Text"	ASCII 9, 10, 13 \& 32 a 127	2 characters per CW
"Numeric"	Only digits 0 to 9	2.9 digits per CW

2. How does it work
 PDF-417

Code word:

- 4 bars and 4 spaces which totals 17 modules in width.
- Each bar and space can be from 1 to 6 modules in length.
- In theory it has 9*929 patterns. Each set of 929 patterns is called a cluster (character set). PDF417 only uses cluster number 0,3 and 6.
- Adjacent rows use different clusters in the sequence $0,3,6,0,3,6$

http://grandzebu.net/informatique/codbar-en/pdf417.htm

2. How does it work

PDF-417

- The CW number 900 to 928 have special meaning, some enable to switch between modes in order to optimise the code.

CW number :	Function
900	Switch to "Text" mode
901	Switch to "Byte" mode
902	Switch to "Numeric" mode
903 a 912	Reserved
913	Switch to "Octet" only for the next CW
914 a 920	Reserved
921	Initialization
922	Terminator codeword for Macro PDF control block
923	Sequence tag to identify the beginning of optional fields in the Macro PDF control block
924	Switch to "Byte" mode (If the total number of byte is multiple of 6)
925	Identifier for a user defined Extended Channel Interpretation (ECI)
926	Identifier for a general purpose ECI format
927	Identifier for an ECI of a character set or code page
928	Macro marker CW to indicate the beginning of a Macro PDF Control Block

2. How does it work

PDF-417

- Start and stop pattern (static and are the same for all barcodes)
- Left and right row indicators (chosen to achieve maximum contrast, also bear row number and error correction level)
- Data and data count (unique for each barcode and represents the encoded

Start pattern	Left row indicator	Data count	Datawords	Right row indicator	Stop pattern
Start pattern	Left row indicator	Datawords		Right row indicator	Stop pattern
\ldots	\ldots	\ldots	\ldots	\ldots	
Start pattern	Left row indicator	...			
Start pattern	Left row indicator	Datawords	E rror correction	Right row indicator	Stop pattern

- Error correction codewords (2 min, 510 max)

2. How does it work
 PDF-417

Example:

- First CW indicates CW total number of the code including: data, CW of stuffing and itself but excluding CW correction.
- Sample of code with 14 data CW, a 15th CW indicate CW number, one padding CW and 4 correction CW. (Level 1)

Structure

- $\mathrm{D} 15=$ length descriptor (16 in this sample)
- DO = padding
- D1 a D14 = data
- L1 a L10 = left side CW
- R1 a R10 = right side CW
- CO a C3 = error correction, level 1

	L1	D1	D14	R1	
	L2	D13	D12	R2	
	L3	D11	D10	R3	
	L4	D9	D8	R4	
S	L5	D7	D6	R5	S
	L6	D5	D4	R6	
t	L7	D3	D2	R7	t
	L8	D1	D0	R8	
a	L9	C3	C2	R9	o
\mathbf{r}					p
t	L10	C1	C0	R10	

2. How does it work

PDF-417

Example: 4 different character sets:

- Each CW encode 2 characters;
- if C1 and C2 are the values of the two characters, CW value is : C1 $\times 30+\mathrm{C} 2$
- If it remains an alone character, we add to it a padding switch, for instance T_PUN.

Sample, sequence to encode : Super !
S: 18, LOW : 27, u: 20, p:15, e: 4, r:17, SPACE : 26, T_PUN : 29, !: 10 that is 9 characters, we'll add a T_PUN for the padding.
$C W_{1}=18 \times 30+27=567$
$\mathrm{CW}_{2}=20 \times 30+15=615$
$\mathrm{CW}_{3}=4 \times 30+17=137$
$C W_{4}=26 * 30+29=809$
$\mathrm{CW}_{5}=10 \times 30+29=329$
The sequence is consequently : $567,615,137,809,329$

Value	Uppercase	Lowercase	Mixed	Punctuation
0	A	a	0	;
1	B	b	1	$<$
2	C	c	2	$>$
3	D	d	3	@
4	E	e	4	[
5	F	f	5	1
6	G	g	6]
7	H	h	7	-
8	I	I	8	'(Quote)
9	J	j	9	\sim
10	K	k	\&	$!$
11	L	1	CR	CR
12	M	m	HT	HT
13	N	n	,	,
14	0	0	:	:
15	P	p	\#	LF
16	Q	q	-	-
17	R	r	.	.
18	S	s	\$	\$
19	T	t	1	1
20	U	u	+	g
21	V	v	\%	1
22	W	w	*	*
23	X	x	=	(
24	Y	y	\wedge)
25	Z	z	PUN	?
26	SP	SP	SP	f
27	LOW	T_UPP	LOW	\}
28	MIX	MIX	UPP	' (Apostrophe)
29	T_PUN	T_PUN	T_PUN	UPP

2. How does it work

PDF-417

- The "Byte" mode allow to encode 256 different bytes, that is the entire extended ASCII table.

Sample 1 : word to encode : alcool

The sequence of bytes (in ASCII) is: 97, 108, 99, 111, 111, 108
$S=97 \times 256^{5}+108 \times 256^{4}+99 \times 256^{3}+111 \times 256^{2}+111 \times 256+108=107118152609644$
$\mathrm{CW}_{0}=107118152609644 \mathrm{MOD} 900=244$
$S=107118152609644 \backslash 900=119020169566$
$\mathrm{CW}_{1}=119020169566 \mathrm{MOD} 900=766$
$\mathrm{S}=119020169566 \backslash 900=132244632$
$\mathrm{CW}_{2}=132244632 \mathrm{MOD} 900=432$
$\mathrm{S}=132244632 \backslash 900=146938$
CW3 $=146938 \mathrm{MOD} 900=238$
$\mathrm{S}=146938 \backslash 900=163$
CW4 $=163 \mathrm{MOD} 900=163$
The sequence including the switch is consequently : $924,163,238,432,766,244$
Sample 2 : word to encode : alcoolique
The sequence of bytes (in ASCII) is : 97, 108, 99, 111, 111, 108, 105, 113, 117, 101
The first 6 bytes are coded like above and we add $105,113,117$ and 101
The sequence including the switch is consequently : $901,163,238,432,766,244,105,113,117,101$

2. How does it work
 PDF-417

- Left and right side CWs are computed according to the table used for the actual row.
- To obtain the CW value, make the following calculation : (Row Number $\backslash 3$) $\times 30+X$ with X taken in the following table.
- (First row is row number 0)

Table used to encode the CWs of this row	X for the left side CW	X for the right side $C W$
1	(Number of rows -1) $\backslash 3$	Number of data columns - 1
2	(Security level x 3) + (Number of rows -1) MOD 3	(Number of rows -1) $\backslash 3$
3	Number of data columns - 1	$\begin{aligned} & \text { (Security level x } 3 \text {) } \\ & +(\text { Number of rows }-1) \text { MOD } 3 \end{aligned}$

Bulls eye code
1D Bar code
2D matrix code (PDF417/DataMatrix/QRCode/...)

HOW DOES IT WORK?

2. How does it work

GS1 - DataMatrix

- Composed of two separate parts the finder pattern (to locate the symbol), and the encoded data itself

Finder Pattern

- defines the shape, the size, X -dimension

Finder pattern and the number of rows and columns in the symbol.

- has a function similar to the Auxiliary Pattern in an EAN-13
- The solid dark: "L finder pattern" is used to determine the size, orientation and distortion of the symbol.
- Dashed lines: "Clock Track" defines the basic structure of the symbol and can also help determine its size and distortion.

2. How does it work

GS1 - DataMatrix

Symbol structure

- Number of rows and columns - variable from 10 to 144 lines

Symbol Size*		Data Region		Mapping Matrix Size	Total Codewords		Maximum Data Capacity		\% of codewords used for Error Correction	Max. Correctable Codewords Error/Erasure	
		Num.	Alphanum.								
Row	Col			Size	No.	Data	Error	Cap.			Cap.
10	10	8×8	1		8×8	3	5	6	3	62.5	2/0
12	12	10×10	1	10×10	5	7	10	6	58.3	3/0	
14	14	12×12	1	12×12	8	10	16	10	55.6	5/7	
16	16	14×14	1	14×14	12	12	24	16	50	6/9	
18	18	16×16	1	16×16	18	14	36	25	43.8	7/11	
20	20	18×18	1	18×18	22	18	44	31	45	9/15	
22	22	20×20	1	20×20	30	20	60	43	40	10/17	

- Example:
- Symbol size 10×10 + quiet zone $2=12$ lines/collumns
- Data part: $8 \times 8=8$ code words (3 data $/ 5$ error correction)

2. How does it work

GS1 - DataMatrix

Symbol structure

- Divided into data regions, matrix 32×32 into 414×14 regions
- Data unit 8 bits = code word

Error correction

- Variable, Reed-Solomon error correction
- Calculates complementary codes and add-ins
- Reconstitutes the original encoded data by recalculating the data from the complementary codes and add-ins.
- The recalculation regenerates the original data by locating errors at the time of scanning.

2. How does it work

GS1 - DataMatrix

Encoding example: char: "123456"

- Data encoding:
- The ASCII encoding converts the 6 characters into 3 bytes.
$-12,34$ and $56(x+130)=142164186=\underline{3 \text { data code words }}$
- Error correction: (RS algorithm) 5 error correction code words:

| Codeword: | 1 | 2 | 3 | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Decimal: | 142 | 164 | 186 | | | | |
| Hex: | 8 E | A 4 | BA | 5 | 6 | 7 | 8 |
| 114 | 25 | 5 | 88 | 102 | | | |
| 72 | 19 | 05 | 58 | 66 | | | |

1000111010100100101110100111001000011001000001010101100001100110

2. How does it work

GS1 - DataMatrix

1000111010100100101110100111001000011001000001010101100001100110

The final matrix would be:

2.1	2.2	3.6			3.7	3.8	4.3	4.4	4.5
2.3	2.4	2.5	5.1	5.2	4.6	4.7	4.8		
2.6	2.7	2.8	5.3	5.4	5.5	1.1	1.2		
1.5	6.1	6.2	5.6	5.7	5.8	1.3	1.4		
1.8	6.3	6.4	6.5	8.1	8.2	1.6	1.7		
	7.2	6.6	6.7	6.8	8.3	8.4	8.5	7.1	
7.4	7.5	3.1	3.2	8.6	8.7	8.8	7.3		
7.7	7.8	3.3	3.4	3.5	4.1	4.2	7.6		

1	0	0	1	0	1	1	0
1	0	0	0	0	0	1	0
1	0	0	0	1	1	1	0
1	0	0	0	0	1	0	0
0	0	0	0	0	1	1	1
1	1	0	1	1	0	0	0
1	1	1	0	1	1	0	0
0	0	1	1	1	0	1	0

After colouring the patterns which are numbered 1:

Finally we add the finder pattern to cover the symbol above :

2. How does it work

GS1 - DataMatrix

Convert data from ASCII to L-shaped tiles by adding 1 and convert to binary:

Eg Uppercase ' W ' = ASCII 87
$87+1=88$
$=58$ (base 16) $=01011000$ (base 2)

Lowercase ' i ' = ASCII 105
$105+1=106$
$=6 \mathrm{~A}($ base 16$)=01101010($ base 2$)$

Start filling grid from 5th row, 1st column

If the tile falls off the edge,
put remainder on the opposite side

Confinue placing tiles in zig-zag

This shows the first W in position

This shows the W and the i

Bulls eye code
1D Bar code
2D matrix code (PDF417/DataMatrix/QRCode/...)

HOW DOES IT WORK?

2. How does it work

QR code

QR Code - Structure
 Model 2005 - ISO/IEC 18004:2006

Version ($1 \leq V \leq 40$): Size $=N \times N ; N=4 \cdot V+17 \Rightarrow N^{2}$ modules

Quiet Zone: 4 №; ≥ 4-mod light margin surrounding cell
ID/Finder/Positioning/Orientation: 3 №; $7 \times 7 \Rightarrow 147 \mathrm{mods}$Alignment: K №; $K \in\{0,1,6,13,22,33,46\} ; 5 \times 5 \Rightarrow 25 \cdot K$ modsTiming: 2 №; $1 \times(N-16) \Rightarrow 2 \cdot(N-16)$ mods

Format Info: 5 №; $1 \times 8,1 \times 6,3 \Rightarrow 31$ mods
Version Info: 2 №; $V \geq 7$ only; $3 \times 6 \Rightarrow 0 \underline{\mathrm{v}} 36$ mods
Content: Cell \Artifacts $=$ Data (incl. Pads) + EDC (+ Remainder)
E.g.: $V=3 \Rightarrow 29^{2}-(45+147+25+26+31+0)=567$ content mods

2. How does it work

QR code

Symbol structure

- Number of rows and columns - variable from 21 to 177 lines

- Data unit 8 bits = code word
- Format info $2 x$ (encoded BCH)

2. How does it work

QR code

- Structure

[^0]
QR Code - Layout \& Stream-Encoding

Model 2005 - ISO/IEC 18004:2006

Format Info: 2 №; 15 bits $\Rightarrow 30$ (+1 unused) bits

\rightarrow Level (for EDC)
\rightarrow Mask (for readability-robustness)
1 unused module; filled with 1_{2} bit
Content \Rightarrow D/E-Codespaces - Stream-Encoding Bit-Placement Principles:

- Encoding Region tiled by codewords; 8 bits; ~ 2-wide columns; arrow-directed
- Codeword-tiling snakes/zigzags bottom/right-to-top/left, avoiding barriers; block-interleaved (enhances EDC; see ISO/IEC spec, $56.5 .5-6$, Table 9)
- D/Data-space: Data (prepared/protocol); streamed; masked/"cooked";
- E/EDC-space: EDC; derived from D-space; streamed; remainder modules (if any) filled with 0_{2} bits; masked/"cooked"
- Boundary between D/E-spaces is determined by the EDC level in force
- Bit-streaming: MSb-to-LSb/right-to-left, in 2-wide arrow-directed order
- Bit-ordering: $m \leq n \Leftrightarrow$ bit\#m§bit\#n (" $\leq / /$ ess-than" \Leftrightarrow " $\leqslant / /$ ess-significant")

Examples of content bit-streaming \rightarrow codewords:

2. How does it work

QR code

Encoding Data

QR Code - Protocol(s)

Model 2005 - ISO/IEC 18004:2006

D-Space Content (raw/unmasked): Sequence of SDD (Self-Describing Data) segments

Native Modes: SDD is TLV (Type/Length/Value)
$0001_{2}=1_{16} \xlongequal[N]{ }$ [umeric] - $0-9$ [3 chars/digits $\Rightarrow 10$ bits]
$001 \theta_{2}=2_{16} \triangleq$ A [lphanumeric] - $0-9 \mathrm{~A}-\mathrm{Z}_{\mathrm{s}} \$ \%^{*}+. .1: \quad[2$ chars $\rightarrow 11$ bits]
$010 \theta_{2}=4_{16} \triangleq \mathrm{~B}$ [yte|inary] - $00_{16}-\mathrm{ff}_{16}$ ["default" \sim ISO/IEC 8859-1="Latin-1"; 1 char $\rightarrow 8$ bits)
$100 \theta_{2}=8_{16} \xlongequal{\triangleq}$ K[anji] — Shift JIS X 0208 (see ISO/IEC spec for encoding]
Type: Character-set (as just indicated, above)
Length: Count of N/A/B/K chars, base-2 encoded in 8-16 bits:

Versions 1-9	-	$\mathrm{N}: 10$	$\mathrm{~A}: 9$	$\mathrm{~B}: 8$	$\mathrm{~K}: 8$
Versions 10-26	-	$\mathrm{N}: 12$	$\mathrm{~A}: 11$	$\mathrm{~B}: 16$	$\mathrm{~K}: 10$
Versions 27-40	-	$\mathrm{N}: 14$	$\mathrm{~A}: 13$	$\mathrm{~B}: 16$	$\mathrm{~K}: 12$

Value: Standardized, efficient, per-charset encoded bit-stream (as just indicated, above)
Pad-out partial/final (8-bit) D-codeword with θ_{2} bits (if necessary)
Pad-out D-space with alternating $11101100_{2}=\mathrm{ec}_{16} \& 00010001_{2}=11_{16}$ bytes (if necessary)
FNC1 (Function Code 1) Modes: Pre-defined semantics
$0101_{2}=5_{16} \stackrel{\text { A }}{=}$ FNC1, $1^{\text {st }}$ position - See ISO/IEC spec
$1001_{2}=9_{16} \xlongequal{\wedge}$ FNC1, $2^{\text {rdd }}$ position - See ISO/IEC spec
ECI (Extended Channel Interpretation): General escape hatch (e.g., compression, encryption) $0111_{2}=7_{16}$ - See ISO/IEC spec
Faux Modes: Structural constructs; not "true" modes
$0011_{2}=3_{16}=$ Structured-Append - Link ≤ 16 QR code symbols (see ISO/IEC spec) $0000_{2}=0_{16} \triangleq$ Terminator/EOM - Potentially truncated/omitted

2. How does it work

QR code

Masking data:

2. How does it work
 QR code

- Try it yourself

READERS

5. Readers

- A barcode reader (or barcode scanner) is an electronic device for reading printed barcodes. It consists of a light source, a lens and a light sensor translating optical impulses into electrical ones.
- Additionally, nearly all readers contain decoder analyzing the barcode's image data provided by the sensor and sending the barcode's content to the scanner's output port.

5. Readers

Types of barcode readers:

- Pen-type readers
- Laser scanners
- CCD readers
- Camera-based readers
- Omni-directional barcode scanners
- Cell phone cameras

- 3D scanners

BENEFITS

6. Benefits

- Can provide detailed up-to-date information on the business, accelerating decisions and with more confidence. For example:
- Fast-selling items can be identified quickly and automatically reordered.
- Slow-selling items can be identified, preventing inventory build-up.
- The effects of merchandising changes can be monitored, allowing fastmoving, more profitable items to occupy the best space,
- Historical data can be used to predict seasonal fluctuations
- Items may be repriced on the shelf to reflect price increases.
- This technology also enables the profiling of individual consumers, typically through a voluntary registration of discount cards.
- Besides sales and inventory tracking, barcodes are very useful in logistics.

5. References

- History of development of barcode
http://www.barcoding.com/information/barcode history.shtml
- Interviews with inventors http://idhistory.com/videodirectory.html
- Barcodes specification http://mdn.morovia.com/kb/20/, http://www.tecit.com/en/support/knowbase/symbologies/Default.aspx
- Summary of barcodes http://en.wikipedia.org/wiki/Barcode
- Collection of information about barcodes http://www.adams1.com/newspage.html
- Changing color barcode http://2d-code.co.uk/4d-barcodes/
- All about QR codes http://www.denso-wave.com/arcode/, en.wikipedia.org/wiki/QR code

[^0]:

