Barcodes - error correction

Identification systems (IDFS)

Department of Control and Telematics
Faculty of Transportation Sciences, CTU in Prague

Contents

- Types of error correction
- Where it is used
- Principles of EC

Types of error correction

Types of error correction and its usage

- No correction
- Some barcodes like 2 of 5
- Simple checksum - no correction just detection
- 1D barcodes like UPC, EAN etc.
- Self correcting codes (Reed Solomon codes - BCH family)
- 2D barcodes (PDF417,QR code)

Principles of EC - PostNet

The correction character is always the digit that, when added to the sum of the other digits in the barcode, results in a total that is a multiple of 10, so modulo by 10 is zero.

- For example, the sum of the ZIP+4 barcode 12345-6789 is
- $1+2+3+4+5+6+7+8+9=45$.
- Adding a correction character of 5 results in the
- sum of the 10 digits being a multiple of 10 .
- The check digit is thus 5 .

5-Dlgit ZIP Code (A Fleld)

Principles of EC - UPC-A

The correction character is always the digit calculated in following way:

- For example, in a UPC-A barcode "03600029145x" where x is the unknown check digit, x can be calculated by
- adding the odd-numbered digits $(0+6+0+2+1+5=14)$,
- multiplying by three $(14 \times 3=42)$,
- adding the even-numbered digits $(42+(3+0+0+9+4)=58)$,
- calculating modulo ten ($58 \bmod 10=8$),
- subtracting from ten (10-8=2). // only in not zero
- The check digit is thus 2.

Principles of EC - PDF417

Error correction: 8 levels, Reed Solomon codes

- based on a polynomial equation where \mathbf{x} power is $\mathbf{2}^{s+1}$ ($s=$ error correction level). Example $s=1$ leads to polynomial: $a+b x+c x^{2}+d x^{3}+x^{4}$ where a, b, c, d are factors of the polynomial equation (pre computed)
- The equation is : $(x-3)\left(x-3^{2}\right)\left(x-3^{3}\right) \ldots . .\left(x-3^{k}\right)($ with $k=2 s+1)$ MOD 929 is applied on each factor

Variables:

- $k=2^{s+1}=\#$ correction CWs
- a = factors array
- $m=$ number of data CWs
- d = data CWs array
- $\mathrm{c}=$ correction CWs array

```
For i=0 To m-1
    t = (d(i) +c(k-1)) Mod 929
    For j =k - 1 To 0 Step -1
        If j}=0\mathrm{ Then
            c(j) = (929-(t* a (j)) Mod 929) Mod 929
        Else
            c ( j ) = ( c ( j - 1 ) + 9 2 9 - ( t * a ( j ) ) M o d ~ 9 2 9 ) ~ M o d ~ 9 2 9 ~
            End If
    Next
Next
For j = 0 To k - 1
    If c(j) <> 0 Then c(j) = 929-c(j)
Next
```


Principles of EC - QR code - Reed Solomon - 1

QR codes use Reed-Solomon error correction.

- Step 1: Find out how many error correction code words you need to generate.
- Version 1 with error correction level Q. This combination requires 13 blocks of data, and 13 error correction code words
- Step 2: Create your message polynomial
- Our 13 data blocks :00100000 0101101100001011011110001101000101110010 11011100010011010100001101000000111011000001000111101100
- Convert each 8-bit word from binary to decimal:
- 32, 91, 11, 120, 209, 114, 220, 77, 67, 64, 236, 17, $236 U$
- Message polynomial:
- $32 x^{\wedge} 25+91 x^{\wedge} 24+11 x^{\wedge} 23+120 x^{\wedge} 22+209 x^{\wedge} 21+114 x^{\wedge} 20+220 x^{\wedge} 19+77 x^{\wedge} 18$ $+67 x^{\wedge} 17+64 x^{\wedge} 16+236 x^{\wedge} 15+17 x^{\wedge} 14+236 x^{\wedge} 13$
- The exponent of the first term is:
- (number of data blocks) + (number of error correction code words) - 1
- In our case, this is 13+13-1=25. So, the first term of our polynomial is $32 x^{25}$.

Principles of EC - QR code - Reed Solomon - 2

- Step 3: Create your generator polynomial.
- QR codes use a Galois field that has 256 elements, the numbers that we will be dealing with will always be at most 255 and at least 0 .
- The generator polynomial is always of the form $(x-\alpha)\left(x-\alpha^{2}\right) \ldots\left(x-\alpha^{t}\right)$, where t is equal to the number of required error correction code words minus 1. We need 13 error correction code words, so t in this case is 12.
- More info at: http://www.thonky.com/qr-code-tutorial/part-2-errorcorrection/
- Result of these mathematical operation : $168 x^{\wedge} 12+72 x^{\wedge} 11+22 x^{\wedge} 10+$ $82 x^{\wedge} 9+217 x^{\wedge} 8+54 x^{\wedge} 7+156 x^{\wedge} 6+0 x^{\wedge} 5+46 x^{\wedge} 4+15 x^{\wedge} 3+180 x^{\wedge} 2+$ $122 x^{\wedge} 1+16 x^{\wedge} 0$... Next we convert it to alpha notation
- Computed correction coefficients code words: 329111120209114220 77676423617236168722282217541560461518012216
- Convert to binary.
- Nice calculator http://www.pclviewer.com/rs2/calculator.html

