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ABSTRACT 

Applications of Intelligent Transportation Systems (ITS) seek to improve 

efficiencies in transportation by using emerging information technologies.  One element 

of the ITS infrastructure is traffic signal control used to improve traffic flow over arterial 

road networks.  Traffic signal control systems take advantage of a variety of advanced 

control strategies that take into account current traffic conditions. 

The most widely used form of traffic surveillance device is the single-loop 

detector.  System detectors are single-loop detectors that are placed well behind stop bars 

at most signalized (arterial) intersections, and used to capture traffic conditions. 

There are several important applications of detector data.  Traffic engineers 

develop signal-timing plans using historical data to control over 900 signalized 

intersections, in the case of the Virginia Department of Transportation’s (VDOT) Smart 

Traffic Signal Systems  (STSS) group.  However, a more urgent requirement for detector 

data exists for automated traffic signal control systems, such as the traffic-responsive 

(TRSP) mode in first-generation control (1-GC) systems.  These systems control and 

implement suitable signal-timing plans for arterial networks based on current traffic 

conditions that are described by detector data. 

There is an inherent reliability problem with surveillance devices such as single-

loop system detectors.  These types of detectors are prone to fail and can be attributed to 

many natural and man-made factors.  The situation of detectors going off-line would 

render useless automated signal control systems. 
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The objective of this research is to investigate imputation techniques for 

estimation of missing values of time-critical traffic data due to off-line or non-responsive 

system detectors.  Ideally, imputation techniques should exploit the underlying spatial 

relationships among system detectors throughout an arterial network.  Estimates of 

missing system detector data at any particular moment should be representative of the 

arterial network’s traffic conditions to effectively support continuous operations of 

traffic-responsive or traffic-adaptive signal control strategies. 

This research proposes a new imputation model class called the C-STARMA.  

This new development is based upon the Space-Time Series model (STARMA) but 

extends that technique to incorporate contemporaneous data in addition with historical 

time series data.  The C-STARMA model building procedure is also described and 

implemented using real-world traffic data.  The C-STARMA was empirically validated to 

consistently outperform other techniques implemented in this research.  We observed that 

this new model class performed well at estimating traffic data (volume and occupancy), 

as well as showing a high level of precision. 
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1.0 INTRODUCTION 

1.1 Intelligent Transportation Systems 

The development of ITS systems seeks to improve efficiencies in transportation 

by using emerging information technologies.  One element of the ITS infrastructure is 

traffic signal control to improve traffic flow over arterial road networks.  Traffic signal 

control systems take advantage of a variety of advanced control strategies that take into 

account current traffic conditions. 

1.1.1 Advanced Traffic Signal Control Strategies 

The most widely used form of traffic surveillance device is the single-loop 

detector.  System detectors are single-loop detectors that are placed well behind stop bars 

at most signalized (arterial) intersections, and used to observe current traffic conditions.  

Data is collected at 1-minute intervals, however, it is aggregated and archived to the 

database every 15-minutes.  The database stores data for volume (vehicles per hour), 

occupancy (percent of hour), and speed (miles per hour) according to time-of-day and 

date. 

There are several important applications of detector data.  Traffic engineers 

develop signal-timing plans using historical data to control over 900 signalized 

intersections in the case of the Virginia Department of Transportation’s (VDOT) Smart 

Traffic Signal Systems  (STSS) group.    However, a more urgent requirement for 

detector data exists for automated traffic signal control systems, such as the traffic-

responsive (TRSP) mode in first-generation control (1-GC) systems.  These systems 
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control and implement suitable signal-timing plans for arterial networks based on current 

traffic conditions that are described by detector data.  Data on current traffic conditions 

can be captured by other surveillance technologies as well, including video cameras and 

ramp meters. 

There is an inherent reliability problem with surveillance devices such as single-

loop system detectors.  At any given time, approximately 25-30% of the detectors are off-

line.  Detector failures can be attributed to many natural and man-made factors [32].  For 

instance, wires connecting detectors to control boxes may corrode due to water 

penetration or may be severed by construction teams digging into the ground.  This 

reliability problem greatly affects the signal control systems that require timely and 

accurate detector data in order to properly function. 

1.2 Rationale 

Traffic operations centers, such as the VDOT STSS, use data collected from 

system detectors to support critical traffic management operations.  A continuous feed of 

system detector data capturing current traffic conditions enable advanced signal control 

systems to function properly.  Due to these systems’ heavy reliance on detection devices, 

VDOT management has foregone the use of signal control strategies that may be more 

efficient than the ones employed in current practices. 

Traffic management systems, both currently employed and next generation 

systems that rely upon traffic detection, do not include mechanisms to ensure effective 

continuous operation in the event of surveillance system failure or non-response.  In 
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addition, current research does not specifically address how advanced signal control 

systems should operate in event of failure or non-response. 

1.3 Goals and Objectives 

The objective of this research is to investigate imputation techniques for 

estimation of missing values of time-critical traffic data due to off-line or non-responsive 

system detectors.  The objective is to support continuous operations of advanced signal 

control systems as a fault-tolerant system.  Estimates of missing system detector data 

should be representative of current traffic conditions to effectively support continuous 

operations of traffic-responsive or traffic-adaptive signal control strategies. 

1.4 Scope 

The scope of this study is limited to estimating values of vehicular volume 

(vehicles per hour) and occupancy (percent) within Northern Virginia’s arterial networks.  

These values are normally observed using traffic surveillance devices, such as system 

detectors embedded along approaches to signalized intersections. 

This study does not examine the characteristics or patterns of missing data from 

system detectors.   That is, we do not seek to characterize the reliability of surveillance 

devices, such as single-loop detectors.  Our purpose is to estimate missing values of 

traffic data captured by these detection devices in the event of their failure. 

The study focuses upon a sub-network of intersections within the greater Reston 

Area Network (RAN) in Fairfax County, Virginia.  This sub-network comprises of the 
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three adjacent intersections of Reston Parkway and South Lakes Drive, Glade Drive, and 

Fox Mill Road. 

1.5 Overview of Technical Report 

This thesis is organized in seven chapters, including the introductory chapter.  The 

remaining chapters are summarized as follows: 

• Chapter 1: Introduction 

• Chapter 2: ITS Advanced Signal Control Systems 

This section discusses in detail the current state of practice in the domain of traffic 

signal control systems.  Different signal control strategies and the information systems 

implementing these strategies are presented.  In particular, their heavy reliance on current 

traffic data that is captured by detection devices is highlighted. 

• Chapter 3: Data Imputation Techniques 

A brief discussion is presented on traditional computation techniques to treat 

missing data.  These techniques are primarily of interest to the analyst who wishes to 

analyze a data set that contains missing data, by substituting imputed values for missing 

values.  Since this research project’s scope is imputing data in real-time, data forecasting 

and estimation techniques are presented as the computational basis for the study. 

• Chapter 4: Problem Formulation & Implementation 
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This section presents the mathematical formulation of the data imputation 

techniques discussed in chapter 3.  Also, the implementation details of these techniques 

are presented. 

• Chapter 5: C-STARMA 

This section presents the new model class by describing its development, 

notation, and model building procedure.  

• Chapter 6: Results & Analysis 

The results of the models’ effectiveness to estimate current traffic data are 

presented and analyzed.  The proposed techniques are evaluated in terms of their viability 

for operational use.  Issues to consider include computational complexity and 

performance, ease of coding, and other practical aspects.  

• Chapter 7: Conclusion 

The final chapter summarizes the research findings and contributions, and 

presents recommendations for further research. 
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2.0 ITS ADVANCED SIGNAL CONTROL SYSTEMS 

2.1 Data Requirements in Intelligent Transportation Systems 

Traffic operations centers, such as VDOT’s Northern Virginia Traffic Signal 

Systems center, use data collected from system detectors to support critical traffic 

management operations.  In VDOT’s case, system detector data are collected via single-

loop detectors placed well behind stop bars at most signalized (arterial) intersections.  

This data describes the traffic conditions at 15-minute intervals and are used by traffic 

engineers to develop timing plans for signal control of its 900+ signalized intersections.  

Thus, detector data is a necessary ingredient in developing appropriate timing plans for 

first-generation traffic signal control systems.  Next-generation systems such 2-GC and 3-

GC that implement real-time adaptive signal control rely even more on system detectors 

to supply data on current traffic conditions. 

2.1.1 Traffic Signal Control Systems 

Traffic engineers adopted the use of computer-based traffic signal control systems 

in the 1960’s to develop more responsive signal control strategies.  One of the most 

comprehensive studies of new signal control strategies was the Urban Traffic Control 

System (UTCS) conducted by the Federal Highway Administration (FHWA) in the 

1970’s (Gartner et al. 1991).  The purpose of the UTCS project was to develop and test a 

variety of advanced network control concepts and strategies.  This project spanned over 

almost a decade and its results defined the state of the art in the United States until 

present-day.  Research and testing of signal control strategies in the UTCS project were 
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divided into three generations: first-generation control, second-generation control, and 

third-generation control. 

2.1.1.1 First Generation Control (1-GC) 

The widely implemented type of signal control strategy is First-Generation 

Control (1-GC).  This type of system uses pre-determined signal timing plans that are 

developed off-line based on historical traffic data, such as volume (vehicle per hour).  

Traffic management centers implementing 1-GC systems are given several options to 

select timing plans to control the network: time-of-day (TOD), manual, and traffic-

responsive (TRSP).  Example systems include UTCS, Series 2000, and MIST. 

2.1.1.2 TOD Mode 

Traffic engineers develop signal timing plans for assumed traffic patterns based 

on historical data.  Signal plans are implemented by programming the signal control 

hardware to execute specific timing plans at designated time intervals.  For example, an 

AM signal plan can be designed to handle morning traffic between 0600 and 1000 

o’clock. 

2.1.1.3 MANUAL Mode 

Traffic management centers can manually select a pre-defined signal timing plan 

from its stored library to handle special traffic conditions.  For example, a special timing 

plan can be implemented in lieu of the TOD plan if traffic conditions at a particular 

location and moment exceeds the normal traffic patterns. 
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2.1.1.4 TRSP Mode 

Traffic-responsive automatically selects and implements the signal timing plan 

which is best suited to current traffic conditions.  A number of timing plans for various 

traffic conditions are developed off-line and stored in the timing plan database.  Traffic 

surveillance devices, such as loop detectors, measure the volume and occupancy of 

current traffic conditions.  The signal controller then implements the plan from the 

database that has the characteristics that best matches current conditions.  TRSP mode 

updates signal plan selection in 15-minute cycles. 

2.1.1.5 1.5 Generation Control 

1.5-GC systems fill the gap between 1-GC and 2-GC systems, in that timing plans 

are developed on-line according to current traffic conditions.  These timing plans are not 

automatically implemented, however they are stored in the plan database for the traffic 

engineer to select. 

2.1.1.6 Second Generation Control (2-GC) 

Second-Generation Control is an on-line strategy that computes in real-time and 

implements signal timing plans based on traffic surveillance data and predicted values.  

This optimization process can be repeated at 5-minute intervals.  However, to avoid too 

many transitions between plans, new timing plans cannot be implemented more often 

than once every 10 minutes.  Example systems are SCOOT and SCATS. 
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2.1.1.7 Third-Generation Control (3-GC) 

Third-Generation Control strategy was designed to realize a fully responsive, 

adaptive, on-line traffic control system.  The difference from 2-GC was that the period 

after which timing plans were revised was reduced to 3 to 5 minutes. Example 

implementations include RT-TRACS and RHODES. 

2.1.2 Freeway Systems Engineering 

The widespread adoption of advances in intelligent transportation systems enables 

traffic management centers to provide useful information to motorists in their respective 

jurisdictions.  Motorists can be informed by such means as variable message signs (VMS) 

of downstream incidents, congestion, expected travel-times along major arteries, and 

alternative routes to avoid congestion. 

2.1.2.1 Incident detection & management 

Incident management is the coordinated, preplanned use of human and 

technological resources to restore full capacity of arterial or freeway roadways after an 

incident occurs.  This also includes providing timely and relevant information and 

direction to motorists until the incident is cleared.  In order to be effective, incident 

management programs must reduce the following: time to detect an incident, time to 

identify the nature of an incident, time to respond and clear the incident, and traffic 

demands during the incident by applying tactical traffic management measures (e.g. re-

routing traffic).  Rapid detection is a key element in incident management in determining 

that an incident has occurred and to minimize its impact on roadway capacity. 
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One technique for incident detection uses electronic surveillance, such as loop 

detectors.  These sensors are placed along the roadway at predetermined intervals and 

detect the presence of vehicles.  This data is processed automatically to determine 

roadway congestion. 

The advantages of using this type of detection include the ability to continuously 

monitor entire roadway sections and to provide rapid detection, especially in high-volume 

conditions.  However, the trade-offs are high costs associated with planning, design, 

installation, operations, and maintenance of the detectors.  Electronic surveillance also 

does not perform well at detecting non-congestion-causing incidents. 

2.1.2.2 Travel-time estimation 

Several traffic management centers in the U.S. have implemented mechanisms to 

inform motorists of expected travel-times along major arteries.  The algorithms that 

estimate travel times base their calculations upon traffic surveillance data recorded by 

such devices as loop detectors embedded in the roadway.  This information is 

disseminated to motorists typically via variable message signs along the freeway.  An 

example implementation is the Georgia DOT and Seattle area freeway. 

2.1.2.3 Congestion maps 

Most ITS professionals would agree that the effectiveness of incident detection 

has been rather poor. Laboratory research is investigating alternative approaches to 

automated condition monitoring. The research is departing from the traditional goal of 

detecting incidents to attempting to detect if the system is operating "out-of-normal" 

range regardless of an incident state (http://smarttravel.virginia.edu). 
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Figure 2-1: Congestion map for Hampton Roads (Source: http://smarttravellab.virginia.edu) 
 

2.2 Missing Data in the Traffic Engineering Domain 

Missing data in the traffic engineering domain is a critical issue that has yet to be 

definitively investigated.  Traffic surveillance data, such as loop detector data, enable 

traffic management centers to monitor current traffic condition in their jurisdiction.  Loop 

detectors provide data on vehicle count (volume per hour), occupancy (percentage of 

hour), and estimated average speed along the road link.  This data is essential to traffic 

engineers tasked with developing signal timing control strategies.  Real-time data is also 

critical to the operations of UTCS systems such as traffic-responsive mode or adaptive-

control systems. 
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Reliability is a primary concern with surveillance devices such as single-loop 

system detectors.  At any given time, approximately 25-30% of the detectors are off-line 

and contribute to missing data problems in the traffic engineering domain.  Detector 

failures can be attributed to many natural and man-made factors (Parsonson 1984) (Patel 

1995).  For instance, wires connecting detectors to control boxes may corrode due to 

water penetration or may be severed by construction teams digging into the ground.  This 

reliability problem greatly affects the signal control systems that require timely and 

accurate detector data in order to properly function. 

System detector data is archived in the Smart Travel Lab’s database in 15-minute 

intervals throughout the day, spanning from 0:00 to 23:45 hours.  Detector data includes 

volume (vehicles per hour), occupancy (percent of hour), and speed1 (mph) values 

associated with individual system detectors.  There are approximately 900+ system 

detectors for which the database archives historical data.  Data collection for the northern 

Virginia (Fairfax County) region was initiated in February 2, 2000. 

Table 2-1: Sample System Detector Data 

Date / Time 2026 Vol 2026 Occ 2027 Vol 2027 Occ 2028 Vol 2028 Occ 

4/3/00 9:00 124 2 276 2 380 2 
4/3/00 9:15 120 8 284 2 252 1 
4/3/00 9:30 124 2 256 2 300 2 
4/3/00 9:45 112 1 244 2 256 2 

4/3/00 10:00 140 2 252 2 224 2 
4/3/00 10:15 120 1 320 3 364 3 
4/3/00 10:30 92 1 300 3 212 1 
4/3/00 10:45 108 1 332 3 292 2 
4/3/00 11:00 132 2 332 3 252 2 
4/3/00 11:15 136 2 312 3 296 2 
4/3/00 11:30 164 2 396 3 336 3 
4/3/00 11:45 124 2 420 4 380 3 
4/3/00 12:00 204 5 496 5 448 4 

                                                           
1 Speed, or Average Speed (mph) is a calculated value based upon volume and occupancy data.  This 
research focuses only upon estimating missing values of volume and occupancy. 
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The occurrences of missing data in the traffic management domain can be 

described using several scenarios.  Missing data may occur for short time periods, on the 

order of one to several 15-minute time intervals.  This may be caused by a slight 

malfunction in the detector hardware, software, or communications line between the 

detector, controller station, and central computer system at the traffic management center.  

This particular scenario exhibits detector data that is missing for several time intervals 

but data availability is resumed within a short time period (less than one hour). 

Longer intervals of missing data, upwards of several hours to days’ worth of data, 

may be attributed to failure in the detector, computer system, or communications 

components.  In such cases, response maintenance crews are deployed to resolve 

technical difficulties and to get the detectors back on-line.  System failures occurs due to 

man-made factors, such as communications lines being severed by construction, or due to 

natural factors like electrical power surges or short-circuits due to moisture in the loop 

detector hardware.  Depending upon the availability of the maintenance crew or urgency 

to fix the detection system, detector data may not resume for a longer period of time (on 

the order of days).  In addition, traffic management centers or maintenance crews may 

perform routine operations and maintenance activities on detection systems such as 

restarting hardware systems or hardware/software upgrades and, thereby, necessitating 

taking detectors off-line. 

2.2.1 Temporal attribute of detection data 

Detection data in advance traffic management systems feature both temporal and 

spatial attributes.  In terms of its temporal nature, detection data (speed, volume, 
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occupancy) are collected on a 1-minute interval and are aggregated to the database in 15-

minute intervals based upon time-of-day interval and date.  Occurences of missing data 

include unavailability of traffic data for a single TOD interval, short spans (several TOD 

intervals), or longer durations (more than one day).  Missing data can occur for a single 

detector or multiple detectors within the network. 

 

 
Figure 2-2: Partial View of Reston Area Network (Source: SimTraffic simulation by VDOT STSS) 

 

2.2.2 Spatial attribute of detection data 

Detector data also exhibit spatial characteristics due to their geographic placement 

throughout the network.  A network consists of arterial road intersections (includes main 



  15  

 

throughway and sidestreets) for which traffic engineers develop signal timing plans.  

System detectors are situated along each approach to the intersections within our sub-

network of the Reston Area Network.  These detectors capture lane-specific data for 

traffic movements along the corridor and side streets.  Thus, data collected at any 

intersection is expected to exhibit spatial correlation with the data collected at other 

intersections in the same network due to their proximity. 

Our research examines the situation when traffic data is missing for a single 

detector, and then estimate missing data for this one location.  We shall investigate three 

particular network scenarios that use available detectors as model inputs: upstream 

detectors only, both upstream and downstream, and downstream detectors only. 
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3.0 DATA IMPUTATION TECHNIQUES 

3.1 Statistical Methods On Treating Missing Data 

There has been significant research and literature on how to handle missing values 

from data sets.  Techniques to account for missing data range from simple heuristics to 

complex data estimation methods, such as the following: 

• Mean of overall series: This technique simply substitutes the statistical mean of 

observed values in the data set for the instances of missing values. 

• Mean of period within the series in observation is missing: The mean of observed 

values within a specified period is substituted for missing values that occur within 

that period. 

• Mean of adjacent observations: This algorithm allows the analyst to specify the 

“sliding window” size and computes the statistical mean of using observations 

before and after the interval of  missing values. 

•  Interpolation: These algorithms replace missing values by interpolating from 

previously observed values.  Such techniques include moving averages, 

exponential smoothing, linear splines, cubic splines, etc. 

• Regression Imputation: These models fill in the missing values using predicted 

values from a regression of a given variable on other variables in the analysis. 
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• Time Series: If the data set is comprised of observations at a given interval of 

time, then these forecasting techniques are powerful at estimating values for one 

to several intervals into the future. 

Missing data values may be commonplace in data collection efforts, such as social 

surveys or scientific experiments, as well as in intelligent transportation system data 

archives.  This can be attributed to numerous factors, which include non-response from 

the study’s sample or malfunction of data collection devices.  Classical approaches to 

estimating missing data values, such as the ones above, are sufficient for studying 

incomplete data sets when the analyst wishes to account for these instances.  Gold et al. 

(2001) proposed several methods for imputing non-response in traffic volumes occurring 

in intervals under five minutes.  They applied imputation methods (“factor up” and 

straight-line interpolation) and two regression methods (polynomial and kernel) to 

estimate missing values of traffic volume within the ITS database.  These techniques 

employed available data prior to and subsequent of intervals of missing values.  For 

example, Table 3-1 shows sample traffic data collected by detectors 2001, 2002, and 

2002.  The Gold et al. study focused on filling in the missing data that occurred for 

detector number 2020 using previous and subsequent values to the empty intervals. 
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Table 3-1: Instances of Missing Data within an ITS Database 

DetectorID   2001     2002     2020   

DateX Volume 
Occupanc

y Speed Volume 
Occupanc

y Speed Volume 
Occupanc

y Speed 
6/19/00 16:00 492 5 44 364 3 43 340 12 24 

6/19/00 16:15 512 5 45 352 3 47 328 13 23 

6/19/00 16:30 500 11 37 396 5 42 396 20 16 

6/19/00 16:45 496 5 44 372 3 48 344 14 20 

6/19/00 17:00 424 4 45 324 3 52       

6/19/00 17:15 504 5 44 412 4 43 420 24 16 

6/19/00 17:30 464 6 38 372 3 47       

6/19/00 17:45 544 6 44 436 4 48       

6/19/00 18:00 532 7 39 408 4 48 380 11 22 

6/19/00 18:15 452 4 43 368 3 45 324 17 21 

6/19/00 18:30 396 4 44 340 3 47 244 4 29 

 

However, the focus of this thesis project is to estimate in real-time missing data 

values from non-responding or malfunctioning system detectors that directly feed into 

traffic-responsive or traffic-adaptive signal control systems.  Thus, the methods proposed 

in this research only take advantage of traffic data leading up to the interval(s) of non-

response.  This estimation is to be performed in real-time to support on-line signal control 

systems and, therefore, can only apply available data up to the moment of the missing 

observation.  Table 3-2 illustrates this concept: we need to estimate the data for the latest 

interval for which non-response occurs for detector 2020. 
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Table 3-2: Example of Estimating Missing Values for the Current Time Interval 

DetectorID   2001     2002     2020   

DateX Volume 
Occupanc

y Speed Volume 
Occupanc

y Speed Volume 
Occupanc

y Speed 
6/20/00 15:00 440 5 38 380 3 43 192 2 36 

6/20/00 15:15 420 4 41 360 3 49 208 3 38 

6/20/00 15:30 408 4 46 348 3 50 196 4 31 

6/20/00 15:45 440 4 48 400 3 50 232 3 34 

6/20/00 16:00 408 4 43 316 2 50 244 3 29 

6/20/00 16:15 424 4 44 372 3 52 288 5 27 

6/20/00 16:30 388 4 49 392 3 51 272 5 28 

6/20/00 16:45 456 4 45 356 3 53 324 15 25 

6/20/00 17:00 460 4 45 368 3 50 444 19 20 

6/20/00 17:15 436 4 46 432 4 45 364 21 20 

6/20/00 17:30 484 7 39 424 5 41    

 
 

3.2 Data Estimation Techniques 

Classical approaches can perform very well at estimating missing values for 

incomplete data sets.  We wish to apply several of these techniques to estimate missing 

values in the ITS domain of real-time signal control systems.  Again, the scope of this 

research is to investigate the applicability of several imputation techniques to estimate for 

missing values.  We did not perform an exhaustive evaluation of the plethora of data 

imputation methods.  However, the following techniques were selected due to the 

intuition that traffic data in the ITS domain is quite suitable to be modeled and analyzed 

by these approaches. 
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Figure 3-1: Techniques to Impute Missing Data 

 

3.2.1 Time-of-Day (TOD) Historical Average 

Mean imputation substitutes the mean value of the available data for the missing 

data values.  This is a simplistic method that replaces the missing value(s) using the 

statistical mean of the available data.  The general model to derive the sample mean, or 

historical average, is as follows: 

The sample mean x(bar) of a set of numbers x1, x2, …, xn is given by: 

n

x
x

n

i
i∑

== 1  

In the domain of traffic data, our hypothesis is to substitute the mean, or historical 

average, of the time-of-day interval for which missing data is observed.  For example, if a 

detector fails to supply volume data for the 10:00-10:15 AM interval, the historical 
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average of vehicular volume for that particular interval could be used to feed the signal 

control system.  The following example illustrates how the historical average volume 

would be substituted for the time-of-day interval. 

Table 3-3: Sample calculation of historical average model 

Sample calculation of Historical Average

VOLUME

TIME OF DAY Day 1 Day 2 Day 3 Day 4 Day 5
AVERAGE 
VOLUME

10:00 312 364 360 400 416 370.4
10:15 356 352 340 312 440 360.0
10:30 296 272 352 364 284 313.6
10:45 224 344 292 228 360 289.6
11:00 248 304 276 276 280 276.8
11:15 336 236 448 288 312 324.0
11:30 264 396 364 388 316 345.6
11:45 364 356 380 356 376 366.4
12:00 240 336 312 388 324 320.0  

 

3.2.2 Multiple Regression on Neighboring Detectors 

Regression imputation estimates the missing values by regression of the variable 

of interest on the other variables.  The general linear model is: 

εββββ ++++= kk xxxy L22110  

where, 
y   is the dependent variable 
x1, x2, …, xk  are the independent variables 

kk xxxyE ββββ L+++= 22110)(  
is the deterministic portion of the model 

ε  is the probabilistic term 

 

Regression enables us to discover any underlying relationships between the 

detector of interest and its neighboring detectors.  The hypothesis is that we can impute 
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the missing traffic data at a particular detector by regressing upon nearby or spatially 

correlated detectors within the same arterial network.  Since we are working with fifteen-

minute traffic data, we would be able to explore the effects of upstream and downstream 

traffic flow on imputing missing values at a specific intersection. 

The following example illustrates the implementation of the general linear 

regression model.  Referring to the Figure 3-2 below, suppose we wish to regress the 15-

minute volume for detector 2027 upon other detectors within the arterial network such as 

detectors 2008, 2021, 2022, and 2031.  (A feature selection procedure should be 

performed to determine which detectors are suitable independent variables in the 

regression model.)  The resulting regression model to impute the volume at any time 

interval t for detector 2027 would be: 

2031.42022.32021.22008.102027. )()()()()(ˆ
DetDetDetDetDet tVtVtVtVtV βββββ ++++=  

 



  23  

 

South Lakes Drive & Reston Parkway

Glade Drive & Reston Parkway

Fox Mill Road &
Reston Parkway

N

2031 2032

2028 2027

2022 2021

2001 2002

2037 2038

2009 2008

2033
2036

2026

2030
2029

2023

2020

 

Figure 3-2: System detectors along the Reston Parkway (Reston, VA) 

 

3.2.3 Time Series Analysis 

Time Series analysis (ARIMA) estimates missing data using data that preceded 

the missing values in time order.  Traffic data is collected at regular intervals throughout 

the day and, therefore, can be readily modeled using time series analysis techniques.  

Williams et al. (1999) have shown that seasonal autoregressive moving average (Seasonal 

ARIMA) models perform well at forecasting 15-minute traffic data (volume and 

occupancy).  We wish to apply a suitable seasonal ARIMA model as supported in their 

research to estimate traffic data at any 15-minute time interval for which missing data 

occurs.  Thus, the data leading up to the interval of missing data would be used to 

estimate, or forecast, the value for that interval. 
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Figure 3-3: Time series plot of volume data 

3.2.4 Space-Time Autoregressive Moving Average (STARMA) 

Analogous to univariate time series, Space-Time Autoregressive Moving Average 

(STARMA) models can be expressed as a linear combination of past observations and 

errors.  However, instead of allowing dependence of forecasted values on only with past 

observations and errors at one location, dependence is allowed with neighboring locations 

of various spatial orders (Pfeifer, Deutsch 1980).  The STARMA is an extension of the 

univariate time-series model that takes into account time-series data from neighboring 

locations, thus potentially improving the forecasts of future values at a particular location.  

In our efforts to estimate missing data at a specified system detector, the STARMA 
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model takes into account the time series data at this system detector, as well as time 

series data from neighboring detectors. 

The STARMA model is presented in a series of papers by Pfeifer and Deutsch 

(Pfeifer Deutsch 1980).  These papers discuss the theoretical foundation of the STARMA 

model, as well as model implementation procedures, and are as follows: the 

STARMA(pλ1, λ2, .., λp, qm1, m2, .., mq) model class is characterized by linear dependence 

lagged in both space and time.  The autoregressive form of the space-time model would 

express the observation at time t and site i, zi(t) as a linear combination of past 

observations at site i and neighboring sites. 

Notation: 
zi(t) Observation of the random variable Zi(t) 
t Time index (t = 1, .., T) 
N Number of fixed sites in space (i = 1, 2, .., N) 
L(l) Spatial lag operator of spatial order l 

 

The STARMA model class is expressed as follows: 

∑∑∑∑
= == =

−−+−=
q
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k l
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kli
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where, 
 p is the autoregressive  order, 
 q is the moving average order, 
 λk is the spatial order of the kth autoregressive term, 
 mk is the spatial order of the kth moving-average term 
 φkl is the autoregressive parameter at temporal lag k and spatial lag l, 
 θkl is the moving-average parameter at temporal lag k and spatial lag l, 
 W(l) is the N x N matrix of weights for spatial order l, and 

ε(t) is the random normally distributed error vector at time t 
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3.2.4.1 Procedure for Space-Time Modeling: 

1.0 Identification of STARMA models: 

The first step is to determine which of the model forms (STAR, STMA, 

STARMA) is the most appropriate for the data at hand, and its associated temporal and 

spatial orders (p, q, λ, m).  The purpose of the identification process is to choose the 

model class that exhibits theoretical properties that most closely matches those estimated 

from the data.  In univariate time series analysis, the primary tools in identification are 

the autocorrelation and partial autocorrelation functions.  Choosing between the three 

general subclasses of models (AR, MA, ARMA) is a matter of determining whether the 

partial autocorrelation functions cuts off, the autocorrelation function cuts off, or they 

both tail dissipate. 

In space-time models, Pfeifer proposes to combine the N2 possible cross-

covariances between all possible pairs of sites in a logical manner consistent with the 

forms associated with the selected model class.  This is referred to as the space-time 

autocovariance function, which expresses the covariance between points lagged in both 

space and time.  An average covariance between the weighted lth order neighbors of any 

site and the kth order neighbors of the same site at s time lags in the future would be: 








 +
= ∑

=

N

i

i
k

i
l

lk N
stzLtzLEs

1

)()( )()()(γ  

 

where γlk(s) is the space-time autocovariance between lth and kth order neighbors at time 

lag s.   The sample estimate of the space-time autocovariance function is: 
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This leads to the sample estimate of the space-time autocorrelation function between lth 

and kth order neighbors at s time lags apart.  This function approximates constant variance 

at all spatial lags. 
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The space-time partial autocorrelation function is defined as: 

∑∑
= =

−=
k

j l
hljlh jss

1 0
0 )()(

λ

γφγ  

 

Analogous to univariate time series, STARMA processes are characterized by a distinct 

space-time partial and autocorrelation function.  The characteristics of the theoretical 

space-time autocorrelation functions are as follows: 

Table 3-4: Identifying the STARMA Model Type 

Model Form Space-Time 
Autocorrelation 

Function 

Space-Time Partial 
Autocorrelation 

Function 
STAR(pλ1.. λp) Tails off Cuts off after p time lags,

λp spatial lags 
STMA(qm1.. mp) Cuts of after q time lags,

mq spatial lags 
Tails off 

STARMA(p, q ) Tails off Tails off 
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2. Estimation of the STARMA model: 

After a candidate model form has been selected, the next phase of the modeling 

procedure is to estimate the φ and θ parameters.  Pfeifer argues that techniques based on 

standard linear regression theory are suitable for estimation of STAR model parameters.  

As an example, consider the STAR(210) model: 
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In general linear model form Y = XB + ε, this model for t = 1, 2, .., T can be 

written as follows: 
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The zero vectors were substituted for the unobserved z vectors, for those times before the 

system was under observation.  It should be noted that due to the time series nature of the 

STAR model, the linear regression assumptions about the independent or regressor 

variable do not hold.  Specifically, the X matrix is stochastic rather than deterministic in 

repeated samples.  Also, the residuals are not normally independently distributed with 

mean zero and constant variance.  The linear regression results will be used here with 

apriori knowledge that they are only approximate.  Due to the non-linear form of the 

STMA and STARMA models, non-linear optimization techniques must be employed to 

estimate the associated parameters. 
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3. Diagnostic Checking of the STARMA model: 

After a candidate model has been selected and its parameters estimated, the model 

must undergo evaluation to determine whether the model adequately represents the data.  

The first phase is to perform an analysis of the residuals: if the fitted model is adequate, 

the residuals should be white noise, i.e. variance-covariance matrix equal to σ2IN and all 

autocovariances at non-zero lags equal to 0.  The second phase is to verify the statistical 

significance of the estimated parameters. 

3.2.4.2 Example STARMA Model 
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Figure 3-4: Example layout of STARMA model 

As example of a STARMA model of spatial order 1, suppose we wish to estimate 

volume for detector 2032 in Figure 3-4, using detectors 2002 and 2038 as input data 
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sources.  A STARMA (1, 1) model indicates an order of one for both autoregressive and 

moving average parameters, as well as a spatial order of one. 
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where,  φkl = autoregressive parameter at temporal lag k and spatial lag l 

  θkl = moving average parameter at temporal lag k and spatial lag l 

3.2.5 Group Model 

The techniques that we apply to estimate missing data will derive different results 

primarily due to how they apply available system detector data.  Finally, we consider a 

model that takes each of these individual estimations into account similar to that of a 

consensus model.  This group model comprises of a weighted combination of the 

previously explored models’ estimations of missing system detector data.  A simple 

approach to constructing this model is a simple linear (multiple) regression upon the 

models’ estimates of traffic data. 
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4.0 PROBLEM FORMULATION & IMPLEMENTATION 

4.1 System Detector Data 

Traffic data are collected by system detectors which are embedded on each 

approach to the intersections.  Detector data is then archived at the NOVA Operations 

Center and also fed to the systems at the STL.  This research was performed using system 

detector from arterial networks at the individual detector level (vice station level).  

System detector data at the station level is very effective at describing the current traffic 

conditions, however, this research addresses the worst-case scenario where individual 

detectors are off-line. 

4.1.1 Data Selection: Three-Intersection Case 

The scope of our research in estimating missing traffic data is to derive 

estimations of vehicular volume (vehicles per hour) and occupancy (percent of hour).  

The Virginia Department of Transportation’s  (VDOT) Smart Traffic Signal Systems 

(STSS) division provided the necessary data to conduct our research.  We shall focus 

upon the Reston Area Network (RAN) of coordinated intersections that is situated in 

suburbs of northern Virginia.  The main throughway within the RAN is the Reston 

Parkway. 

Traffic data has been collected for this arterial network via single-loop inductance 

wires and archived at the University of Virginia’s Smart Travel Lab databases.  Historical 

data spans from January 2000 to the present.  We selected a series of intersections along 
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the Reston Parkway for which there was sufficient data to perform our model 

development and analysis. 

We focus our model development efforts on three consecutive intersections on the 

Reston Parkway.  From North to South, this sub-network comprises the intersections of 

Reston Parkway and South Lakes Drive (Figure 4-1), Glade Drive (Figure 4-2), and Fox 

Mill Road (Figure 4-3).  System detectors are situated along each of the four approaches 

to each intersection.  This sub-network is graphically represented by Figure 4-4 and each 

individual system detector is identified with a unique identifier number.  The arrows in 

Figure 4.4 indicate the traffic movement for which that particular system detector collects 

data.  For instance, detector 2001 collects volume and occupancy data for a single-lane, 

northbound movement at the intersection of Reston Parkway & South Lakes Drive. 

 

2021
2022

2001
2002

2020

2023

 

Figure 4-1: Intersection of Reston Parkway & South Lakes Drive 
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Figure 4-2: Intersection of Reston Parkway & Glade Drive 
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Figure 4-3: Intersection of Reston Parkway & Fox Mill Road 
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Figure 4-4 represents the three-intersection sub-network of the Reston corridor.  Each of 

the available system detectors is labeled and indicates the approach path for which each 

detector collects traffic volume and occupancy data.  (Note: diagram is not drawn to scale 

and does not convey exact locations of system detectors.) 
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Figure 4-4: Three-Intersection Sub-Network of the Reston Parkway 

 
4.1.2 Data Selection: Corridor Network 

In addition to the investigating model performance on a small sub-network scale, 

the models were also implemented against a larger data set.  We subjected our model 

building procedures to include more than 40 detectors from the Reston Area Network, 

instead of using only the eighteen surrounding detectors as input sources (as in the 
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previous scenarios).  The availability of a larger set of data sources better simulates the 

conditions encountered in real-world traffic operations. 

4.1.3 Descriptive Statistics on System Detector Data 

Although system detector data is available for 24-hours per day, we specified the 

input data for our model development efforts to span from 6:00 AM – 8:00 PM.  This 14-

hour period exhibits the typical business day traffic demand and provides sufficient data 

for our analysis.  The training set used to develop the various models consisted of system 

detector data spanning March-August 2000 from the Reston Area Network.  The test or 

evaluation set consisted of ten day’s worth of system detector data. 

System detector data is continuously archived by the University of Virginia’s 

Smart Travel Lab in fifteen-minute intervals.  For this 14-hour period, fifty-six time 

intervals, or observations, per day.  The following plots (Figure 4-5) illustrate the average 

daily volume and average daily occupancy for each system detector of the three 

intersections for northbound traffic (single lane – detector 2001) at the intersection of 

Reston Parkway & South Lakes Drive. 
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Figure 4-5: Average Volume vs. TOD at Reston Parkway & South Lakes Drive 
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Figure 4-6: Average Volume vs. TOD at Reston Parkway & Glade Drive 
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Figure 4-7: Average Volume vs. TOD at Reston Parkway & Fox Mill Road 
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Figure 4-8: Average Occupancy vs. TOD at Reston Parkway & South Lakes Drive 
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Figure 4-9: Average Occupancy vs. TOD at Reston Parkway & Glade Drive 
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Figure 4-10: Average Occupancy vs. TOD at Reston Parkway & Fox Mill Road 
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4.2 Model Scenarios 

We shall examine three distinct network geometries for each of the modeling 

approaches.  The network geometries are representative scenarios of the availability of 

data sources to our estimation models.  We shall examine the performance of the relevant 

models to reflect these scenarios.  The testing procedure called for imputing traffic data 

(volume and occupancy) for the selected detector at each time-of-day interval, and then 

comparing with the actual values. 

4.2.1 Models Using Upstream Detectors Only: Detector 2001 

This geometry depicts the scenario when only upstream detectors, in addition to 

those from the location-of-interest, are available as data sources to estimate traffic 

parameters at a desired point.  Furthermore, assume that the only additional data sources 

are detectors from upstream intersections, namely the South Lakes Drive and Glade 

Drive intersections.  Therefore, this model would use upstream data sources to estimate 

traffic parameters at a downstream location. 

1. Detector 2001: Northbound detector at South Lakes Drive & Reston Parkway 

Detector 2001 is the system detector located in the inside-most lane at this 

intersection.  It captures volume and occupancy data for the single-northbound lane on 

the mainline.  This detector shall be the focus for the model using only upstream 

detectors as input data. 
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Figure 4-11: Model using data from upstream detectors only 

 

4.2.2 Models Using Both Upstream and Downstream Detectors: Detector 2027 

This geometry depicts the scenario when both upstream and downstream 

detectors, in addition to those from the location-of-interest, are available as data sources 

to estimate traffic parameters at a desired intersection.  The detectors from the upstream 

intersection, South Lakes Drive, and the downstream intersection, Fox Mill Road, 

provide the input data for the various models.  Therefore, this model uses data from both 

upstream and downstream sources to estimate traffic parameters at the particular location. 

2. Detector 2027: Southbound detector at Glade Drive & Reston Parkway 
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Detector 2027 is the system detector located in the inside-most lane at this 

intersection.  It captures volume and occupancy data for the single-southbound lane on 

the mainline.  This detector shall be the focus for the model using both upstream and 

downstream detectors as input data. 
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Figure 4-12: Model using data from both upstream and downstream detectors 

 

4.2.3 Models Using Downstream Detectors Only: Detector 2037 

This geometry depicts the scenario when only downstream detectors, in addition 

to those from the location-of-interest, are available as data sources to estimate traffic 

parameters at a desired intersection.  Furthermore, assume that the only additional data 

sources are detectors from downstream intersections, namely the Glade Drive and Fox 
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Mill Road intersections.  Therefore, this model would use only downstream data sources 

to estimate traffic parameters at a downstream location. 

3. Detector 2037: Northbound detector at Fox Mill Road & Reston Parkway 

Detector 2037 is the system detector located in the inside-most lane at this 

intersection.  It captures volume and occupancy data for the single-northbound lane on 

the parkway.  This detector shall be the focus for the model using only downstream 

detectors as input data. 
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Figure 4-13: Model using data from downstream detectors only 

 



  43  

 

4.2.4 Models Using Extended Network Data 

These models were developed using a significantly larger data than the previous 

scenarios.  We again revisited imputing data for detector 2001; however, the models were 

exposed to more input data sources than the previous models.  Instead of using only the 

eighteen surrounding detectors as input sources to detector 2001 models (as in the 

previous case), we subject our model building procedures to include more than 40 

additional detectors from the Reston Area Network.  Figure 4-14 illustrates the extended 

network. 
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Figure 4-14: Extended Network Scenario 
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4.3 Model Development 

4.3.1 Historical Average Model 

This naïve approach is the baseline from which to compare the performance of the 

remaining models.  Most first-generation traffic signal systems, such as PB Faradyne’s 

MIST, calculate the historical averages of volume and occupancy for each 15-minute 

interval at each system detector throughout the day.  Therefore, this approach is readily 

applicable in practice.  We wish to validate the effectiveness of this simple approach to 

estimating traffic data.  For each of the detectors we specified to model, this model 

calculates the historical average volume and occupancy at each time-of-day interval 

within the 14-hour period. 

The model development procedure is simply to calculate the historical average 

volume and occupancy for each time-of-day interval within period of interest.  This 

estimation model applies to all three network geometries but does not require 

development of distinct models. 

4.3.2 Regression Model 

These models estimate a detector’s volume or occupancy for a particular time 

interval by regressing upon other detectors’ volume or occupancy values at the same time 

interval.  We developed distinct models for each of the three network geometries.  

Depending upon the network geometry, different detectors may be selected as predictor 

variables during the feature selection step.  In addition, separate models are developed to 

estimate data for volume and occupancy. 



  46  

 

The model estimation procedure is as follows: 

Step 1: Perform feature selection to determine the critical predictor variables 

within the sub-network to the dependent variable, i.e. the system detector of 

interest.   We choose to use the Mallow’s Cp criterion to select the input variables. 

Step 2: Fit a multiple linear regression model using the selected detectors’ data 

Step 3: Perform tests to verify that the model’s residuals are approximately NID 

(0, σ2) 

Step 4: Check the utility of the model according to Adjusted-R2 criterion 

Step 5: If the model is adequate, then estimate traffic data (volume or occupancy) 

for each time-of-day interval within period of interest 

4.3.3 Time Series (ARIMA) Model 

These models estimate a detector’s volume or occupancy for a particular time 

interval by treating the traffic data as a time series.  Separate time series models are 

developed for both volume and occupancy.  Williams et al (1999) investigated the 

applicability of seasonal ARIMA models to traffic data; we shall apply their findings in 

our model development. 

The time series model estimation procedure is as follows: 

Step 1: Plot traffic data (volume or occupancy) against time-of-day interval 
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Step 2: Develop sample autocorrelation (ACF) and partial-autocorrelation 

(PACF) correlograms.  Determine seasonal and non-seasonal components and 

periodicity. 

Step 3: Fit appropriate Seasonal ARIMA model 

Step 4: Perform tests for randomness of model’s residuals 

Step 5: If the model is adequate, then estimate traffic data (volume or occupancy) 

for each time-of-day interval within period of interest 

4.3.4 Space-Time Series Model (STARMA) 

As described previously, these models extend the ARMA univariate time series 

models into the spatial domain by taking into consideration time series data from 

neighboring locations to the point-of-interest.  In our study, time series data from 

neighboring detectors can be used in conjunction with time series data at the detector-of-

interest to estimate traffic data for that location.  Again, separate models are constructed 

to estimate volume and occupancy values. 

To simplify the construction of space-time series models, we make the following 

assumptions: Neighboring detectors shall be equally weighted; this is analogous to the 

STARMA spatial order of one designation.  We shall assume that model parameter 

estimation, such as linear regression techniques, can substitute for the weighting matrix. 

We shall also substitute examining cross-correlation functions for STARMA 

autocorrelation and partial autocorrelation functions.  This is a reasonable approach for 

our study since cross-correlation functions exhibit correlation between multiple time 
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series. The observations of one series are correlated with the observations of another 

series at various lags and leads.  In addition, commercial statistical applications, such as 

SPSS, include functions to develop these models. 

Details of the STARMA model building procedure were presented in Section 

3.2.4.  Generally, the spatial-time series model estimation procedure is as follows: 

Step 1: Plot traffic data (volume or occupancy) against time-of-day interval 

Step 2: Develop sample autocorrelation (ACF) and partial-autocorrelation 

(PACF) correlograms; alternatively, develop cross-correlation functions to 

determine correlations between time series data at the detector-of-interest and 

neighboring detectors. 

Step 3: Fit appropriate space-time series model 

Step 4: Perform tests for randomness of model’s residuals 

Step 5: If the model is adequate, then estimate traffic data (volume or occupancy) 

for each time-of-day interval within period of interest 

4.3.5 Group Model 

This model fits a multiple regression model to the estimates derived by the 

previous models.  This weighted model simulates a consensus model by determining if 

multiple estimations serve well to determine traffic data at time interval t.  The combined 

regression & spatial-time series model estimation procedure is as follows: 
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Step 1: Fit a multiple linear regression model to the previous models’ estimations 

of volume and occupancy 

Step 2: Perform tests to verify that the model’s residuals are approximately NID 

(0, σ2) 

Step 3: Check the utility of the model according to Adjusted-R2 criteria 

Step 4: If the model is adequate, then estimate traffic data (volume or occupancy) 

for each time-of-day interval within period of interest 

4.4 Model Execution 

Historical averages for each time-of-day interval were derived from ITS 

databases. Regression and weighted models were executed using Minitab v13.0.  Time 

Series and STARMA models were executed using SPSS v10.3, which include 

functionality to approximate STARMA’s ACF and PACF correlograms via cross-

correlation functions.  Note that research was not focused on developing the best fit 

model for each technique, rather we wish to compare in general terms the different 

approaches to handle system detector in order to estimate missing data.  Therefore, we 

did not perform exhaustive model selection procedures when developing certain models 

(Time Series, STARMA). 

4.5 Evaluation Criteria 

The performance of the models employed to estimate missing values of traffic 

data shall be evaluated by several realistic and informative measures.  The following 
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evaluation criteria should expose the relevance of these models to researchers as well as 

practitioners in the traffic-engineering domain. 

4.5.1 Statistical Measure: Mean Absolute Percentage Error 

A useful measure of accuracy of an estimation model is to express error as a 

percentage of deviation from predicted versus actual values.  We employ the mean 

absolute percentage error (MAPE) statistic to compare the fits of the implemented 

estimation models.  This is a suitable statistic to both researcher and practitioner since 

fluctuations in traffic parameters, such as volume, is usually expressed in terms of 

percentage change from one time interval to another, vis-à-vis a precise numerical value. 

4.5.2 Practical Measure: Traffic Responsive MAPE (V+KO) 

Most signal control systems implemented in the United States are based on First 

Generation or 1.5 Generation Control systems.  One mode of operation is to Traffic 

Responsive (TRSP), which selects the signal-timing plan best suited to current traffic 

patterns.  The benefit of TRSP is that signal-timing plans are automatically implemented 

based upon traffic demand.  However, TRSP mode will not operate if too many detectors 

fail. 

First we calculate the V+KO values for each time-of-day using observed values, 

and then compare against V+KO values using estimated values.  The objective is to 

minimize the MAPE between the actual and estimated values to substantiate that 

predicted values are a good substitute for actual data when detectors fail. 

 



  51  

 

5.0 C-STARMA Model 

5.1 Model Background 

The Times Series and STARMA models used time series data from system 

detectors to estimate missing data for a given location.  Recall that the missing data point 

is observed for the interval at time t.  These models utilized previous data from this 

detector up to this interval (e.g., t-1, t-2, t-3, etc.) depending upon the autoregressive 

and/or moving average components of the time series models.  The STARMA models 

used previous data (t-1, t-2, etc.) from spatially related data sources (i.e., neighboring 

detectors). 

These models do not take advantage of contemporaneous data.  That is, even if 

data is missing at time interval t at the specified detector, data for time interval t may be 

available at neighboring detectors.  We would like to take advantage of as much relevant 

data as possible to derive estimations of the missing data at the detector of interest.  A 

new model was developed to estimate missing data at time interval t for any particular 

detector by regressing upon the following input parameters: (1) times series data at the 

detector-of-interest up to time interval t (time-series models), (2) data at time interval t 

from spatially correlated neighboring detectors (spatial regression), and (3) time series 

data from neighboring detectors up to time interval t (STARMA models).  Using the 

STARMA model as a foundation, we extend that method by factoring in data at the time 

interval t from spatially correlated neighboring data sources.  The C-STARMA model 

includes input parameters to factor in contemporaneous data.  This new model can be 

viewed as a combination of the STARMA model and the spatial regression model 
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implemented earlier in this research.  The notation for the C-STARMA model is as 

follows: 

Notation: 
zi(t) Observation of the random variable Zi(t) 
t Time index (t = 1, .., T) 
N Number of fixed sites in space (l = 1, 2, .., N) 
L(l) Spatial lag operator of spatial order l 

 
The C-STARMA model is expressed as follows: 
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where, 
 β0 is the regression constant 

β l is the regression parameter of the lth term (note: temporal lag, k = 0) 
p is the autoregressive  order, 

 q is the moving average order, 
 λk is the spatial order of the kth autoregressive term, 
 mk is the spatial order of the kth moving-average term 
 φkl is the autoregressive parameter at temporal lag k and spatial lag l, 
 θkl is the moving-average parameter at temporal lag k and spatial lag l, 
 W(l) is the N x N matrix of weights for spatial order l, and 

ε(t)  is the random normally distributed error vector at time t 

5.2 C-STARMA Model Methodology 

This section presents the C-STARMA model building procedure, which is based 

upon the development of the STARMA model.   However, we propose extensions to the 

STARMA model by introducing enhancements to the model components as well as using 

a more robust method for parameter estimation.  Specifically, factors are introduced into 

the model to account for contemporaneous data, and stepwise regression practices are 

used for parameter estimation in case of linear models. 
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Figure 5-1: C-STARMA Model Building Procedure 

5.2.1 Collect Detector Data 

The initial step in the model building procedure is to collect the data pertinent to 

the system under study.  In our domain of traffic signal systems, system detector data are 

archived in the Smart Travel Lab’s databases.  Data should be collected for the location 

(detector) of interest as well as from other detectors within the arterial network.  Detector 

data should be observed at a regular and corresponding time interval for all the detectors 

contributing to the data set.  This model exploits the spatial correlation between the 

detector of interest and neighboring detectors and, therefore, data should be collected 

from those system detectors within the same corridor or network.  This research collected 

volume and occupancy data from detectors within the Reston Area Network, which is the 

arterial network of system detectors in the Reston, Virginia area. 
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5.2.2 Select Detector of Interest 

The detector of interest is the site or location for which we shall build the C-

STARMA model to estimate traffic data.  For practical purposes, this is the detector that 

exhibits missing data for which the analyst desires to impute substitute values.  This 

model building procedure produces a model specific to the detector of interest.  

Therefore, models would need to be derived for each detector in the network that is 

deemed critical to the operations of the traffic signal control systems. 

5.2.3 Perform Variable Reduction 

After the data collection process, the data set may comprise of a large number of 

detectors in addition to the location of interest.  The purpose of this step is to reduce the 

list of detectors, which serve as inputs to the C-STARMA model.  One important benefit 

of this step is that it exposes the spatial correlation between the detector of interest and its 

neighboring detectors.  This step is analogous to the feature selection or variable selection 

process in regression models.  As such, we apply the same feature selection approach as 

in the regression model by using the Mallow’s Cp criterion.  The Cp statistic is defined as 

follows:  

np
RSS

C p
p −+= 2

ˆ 2σ
 

 
where, 

n  is  the number of observations 
p is the number of variables in the regression 
RSSp is the residual sum of squares using p variables 

2σ̂  is an independent estimate of the error  
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The residual variance from the full model is used as the estimate of 2σ̂ .   If the model is 

satisfactory, Cp will be approximately equal to p.  We then select the p variables to 

proceed with building the C-STARMA model. 

5.2.4 Model Identification 

The process of identifying the C-STARMA model type is the same as that of the 

STARMA.  The C-STARMA is based upon the STARMA model so the same procedure 

is applied to identify the autoregressive and/or moving average components of the new 

model.  This process was detailed in Section 3.2.4.  The result of this step is the 

identification of the STARMA components of the C-STARMA model. 

5.2.5 Factor In Contemporaneous Variables 

This new step in the model building procedure is one of the extensions introduced 

by the C-STARMA model.  The C-STARMA model factors in additional variables to 

exploit contemporaneous data.  These variables account for the data at the latest time 

interval, t, for each of the input data sources (detectors).  The new variables are 

parameterized by the β coefficients, which are derived by the regression modeling 

approach.  As an example, consider the C-STAR(210) model: 

)()2()1()1()()()( 20
)1(

111001000 ttztzWtztztztz εφφφβββ +−+−+−+++=  

 

In general linear model form Y = XB + ε, this model for t = 1, 2, .., T can be written as 

follows: 
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The zero vectors were substituted for the unobserved z vectors, for those times 

before the system was under observation.  It should be noted that due to the time series 

nature of the STAR model, the linear regression assumptions about the independent or 

regressor variables do not hold.  Specifically, the X matrix is stochastic rather than 

deterministic in repeated samples.  Also, the residuals are not normally independently 

distributed with mean zero and constant variance.  The linear regression results will be 

used here with a priori knowledge that they are only approximate. 

5.2.6 Parameter estimation 

After a candidate model form has been selected, the next phase of the modeling 

procedure is to estimate the β, φ, and θ parameters.  We employ different techniques to 

approximate the parameter coefficients depending upon whether the C-STARMA model 

is linear or non-linear.  The linear model features only parameters for the regression and 

autoregressive components, or namely the β and φ coefficients.  The non-linear form of 

the C-STARMA model includes the moving average components, which are 

characterized by the θ coefficients.  As with the time series and STARMA models, 

techniques based on standard linear regression theory are suitable for estimation of the 

linear model parameters.  Due to the non-linear form of the C-STARMA model, non-

linear optimization techniques must be employed to estimate the associated parameters. 



  57  

 

Another modification introduced by the C-STARMA model is the use of stepwise 

regression for parameter selection and inclusion in the final model.  Recall that the 

STARMA model procedure includes all detectors as input variables in its model, and then 

eliminates variables in a backward manner that are deemed statistically insignificant.  

The C-STARMA procedure implements stepwise regression to iteratively build the 

model by adding and eliminating variables according to the statistical entry and removal 

criteria. 

5.2.7 Perform Model Diagnosis 

After a candidate model has been selected and its parameters estimated the model 

must undergo evaluation to determine whether the model adequately represents the data.  

The first phase is to perform an analysis of the residuals to verify that they are 

approximately normally and independently distributed with zero mean and σ2 variance.  

The second phase is to verify the statistical significance of the estimated parameters.  In 

addition, we employ the Adjusted-R2 criterion to evaluate linear models.  If the model is 

judged to fit the available data sufficiently well, then it can be used to impute missing 

traffic data.  However, if the model is insufficient, the analyst must repeat the model-

building steps from the model identification stage. 
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6.0 RESULTS & ANALYSIS 

This chapter presents the results of the imputation models for each of the three 

detector scenarios, as well as the extended network data case.  The primary metric used to 

evaluate the models was the Mean Absolute Percentage Error (MAPE).  The MAPE 

metric was evaluated for estimations of volume (vehicles per hour), occupancy 

(percentage of hour), and V+KO.  As previously stated, a lower MAPE score typically 

indicates a stronger model to impute missing data.  In addition, the error distributions 

specify the percentage and range of under- and over-estimations of missing data.  Ideally, 

stronger models should indicate a normal distribution of residuals. 

6.1 Results of Models Using Upstream Detectors Only: Detector 2001 

This traffic scenario features the use of only upstream detectors to estimate traffic 

data at the specified location.  Table 6-1 presents the MAPE performance measure for 

each of the models at estimating volume, occupancy, and V+KO.  All models performed 

well in terms of MAPE values that may be operationally neglible during non-peak 

periods.  For example, the regression model’s volume MAPE of 7.2% may not be as 

significant for periods of 100 vehicles per hour as compared to peak periods where 1000+ 

vehicles per hour are observed.  The C-STARMA model produced the best estimates for 

volume data, but only marginally came in second to the pure Regression model for 

estimating occupancy.  The Group model produced the best MAPE outcome for the 

V+KO estimates.  As expected, these particular models performed well because they 

factored in the spatial correlation between the detector of interest and its neighboring 

detectors. 
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Note that the MAPE results for occupancy models were artificially inflated due to 

the scale and narrower range of this particular data type.  One should be careful to not 

directly compare the volume and V+KO MAPE numbers to those for occupancy. 

Table 6-1:  Mean Absolute Percentage Error (MAPE) - Detector 2001 Scenario 

Detector 2001 Mean Absolute Percentage Error (%) 
MODEL MAPE (Volume) MAPE (Occupancy) MAPE (V+KO)

Historical Average 8.4 31.0 11.5 
Regression 7.2 17.2 7.4 
Time Series 11.3 42.1 14.6 

STARMA 7.1 20.9 8.8 
C-STARMA 6.8 17.3 7.4 

Group 6.9 17.8 7.3 

 

The following figures graphically depict the MAPE results presented in Table 6-1.  

We observe that the models that take advantage of the spatial relationships (e.g., 

Regression, STARMA, C-STARMA, and Group models) between the detectors generally 

performed better than the models that relied solely upon univariate data (Historical 

Average and Time Series models). 
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Figure 6-1: MAPE Results - Detector 2001 
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Table 6-2 presents the distribution of the models’ residuals for volume imputation 

in the detector 2001 scenario.  Overall, all the models performed very well by producing 

residuals that were normally distributed with mean zero and variance 2σ̂ .  Each of the 

models produced estimates that fell within the +/- 15% error range, which imply 

generally accurate estimations.  These results support the strength of the models in 

addition to their MAPE values.  The C-STARMA model was the most precise model by 

producing the largest number of estimations that fell within the +/- 5% range. 

Table 6-2: Error Distributions for Volume - Detector 2001 

Detector 2001 Model Error Distribution - Volume 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5%5% to 15% 15% to 25%> 25%

Historical Average 0.5 6.0 29.3 37.2 20.4 4.6 2.1 
Regression 0.2 3.9 23.0 42.1 24.6 5.6 0.7 
Time Series 1.8 8.4 21.6 31.8 20.7 9.0 6.8 

STARMA 0.0 2.9 22.4 42.8 25.9 5.1 0.9 
C-STARMA 0.0 2.0 26.0 47.0 21.0 4.0 1.0 

Group 0.0 1.0 16.0 46.0 30.0 6.0 1.0 

 

Figure 6-2 graphically depicts the distribution of the models’ residuals.  The C-

STARMA model’s precision is validated by producing the majority of the estimates that 

fell within the +/- 15% error. 
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Figure 6-2: Volume Error Distribution - Detector 2001 Models 
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Table 6-3 presents the distribution of the models’ residuals for occupancy 

imputation in the detector 2001 scenario.  The residual distributions for the occupancy 

estimations were more widespread as compared to those for volume.  Recall that volume 

measures can reach to several thousand vehicles per hour, whereas occupancy is rated on 

a percentage scale.  Though the error distributions for occupancy are more distributed 

over the error ranges, this does not necessarily indicate that the models performed poorly.  

The rational for the widely distributed errors can be attributed to the lower numeral scale 

for occupancy data.  For example, if the actual occupancy value for a particular time 

interval was 5 compared to an estimation of 6, the resulting error is 20.  This error 

percentage of 20 in occupancy is not comparable to a 20 error in volume or V+KO.  A 

normalization process should be performed to properly compare the error percentages 

across the three metrics. 

Table 6-3: Error Distributions for Occupancy - Detector 2001 

Detector 2001 Model Error Distribution - Occupancy 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5%5% to 15% 15% to 25%> 25%

Historical Average 26.14 11.58 8.07 16.14 14.21 9.82 14.04
Regression 8.60 11.75 15.61 21.75 20.18 7.89 14.21
Time Series 22.46 10.53 10.70 10.18 9.12 8.07 28.95

STARMA 27.2 8.8 8.8 9.0 6.1 7.2 33.0
C-STARMA 7.00 13.0 14.0 24.0 18.0 10.0 14.0

Group 6.00 13.0 16.0 22.0 17.0 9.00 16.0
 

Figure 6-3 graphically depicts the residual distributions presented the table above.  

Though residuals were evenly distributed across all the models, the C-STARMA 

produced the largest number of estimations within the +/-5%.  Interestingly, the 

STARMA and Time Series models produced the least reliable estimates of occupancy, 

which was also reflected in their residual distributions. 
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Figure 6-3: Occupancy Error Distribution - Detector 2001 Models  
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The V+KO metric was included to demonstrate the practical validity and 

application of these missing data estimation models.  1.5 Generation Systems and beyond 

use the V+KO method for traffic adaptive signal control systems.  In addition, this metric 

supports the strength of the models at estimating both volume and occupancy.  Table 6-4 

presents the error distributions for the estimating V+KO in the detector 2001 scenario. 

Table 6-4: Error Distributions for V+KO - Detector 2001 

Detector 2001 Error Distribution - V+KO (where K=20) 

MODEL < -25% -25% to -
15% 

-15% to -
5% 

-5% to 
5% 

5% to 
15% 

15% to 
25% > 25%

Historical Average 1.6 10.0 29.0 27.7 20.2 6.5 5.1 
Regression 0.2 5.1 21.6 42.1 24.6 5.4 1.1 
Time Series 4.0 9.0 20.5 24.6 19.8 9.8 12.3 

STARMA 0.7 3.6 20.4 42.4 25.1 6.0 1.6 
C-STARMA 0.0 5.0 24.0 45.0 21.0 5.0 1.0 

Group 0.0 1.0 18.0 45.0 28.0 8.0 1.0 

 

We observe that the models that used multiple predictor variables performed 

better than models that solely relied on univariate data.  These models produced results 

that predominantly fell within the +/-15% error.  In addition, the stronger models were 

the ones that took advantage of the spatial correlation among the neighboring detectors 

and the point of interest.  Figure 6-4 graphically depicts the residual distributions for 

models imputing the V+KO data.  The precision of the C-STARMA and Group models 

were again validated due to the large percentage of estimations within the +/-15% range. 
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Figure 6-4: V+KO Error Distribution - Detector 2001 Models  
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6.2 Results of Models Using Both Upstream and Downstream Detectors: Detector 

2027 

This traffic scenario features the use of both upstream and downstream detectors to 

estimate traffic data at the specified location.  Table 6-5 presents the MAPE results of the 

models imputing volume, occupancy, and V+KO for system detector 2027.  Figure 6-5 

graphically depicts the MAPE results from the table.  The STARMA model produced the 

best results for volume and V+KO imputation, while the Group produced the best MAPE 

result for occupancy estimates.  Other models that produced comparatively low MAPE 

numbers included the Regression and C-STARMA models.  Again, this supports the 

hypothesis that the better models take advantage of the spatial relationship among 

neighboring detectors. 

Table 6-5: Mean Absolute Percentage Error (MAPE) - Detector 2027 Scenario 

Detector 2027 Mean Absolute Percentage Error (%) 
MODEL MAPE (Volume) MAPE (Occupancy) MAPE (V+KO)

Historical Average 8.8 15.7 9.4 
Regression 5.7 20.3 6.3 
Time Series 18.8 21.4 20.7 

STARMA 5.5 12.7 6.1 
C-STARMA 7.1 12.1 7.2 

Group 9.3 11.7 9.0 
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Figure 6-5: MAPE Results - Detector 2027 
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Table 6-6 presents the distribution of the models’ residuals for volume imputation 

in the detector 2027 scenario.  Figure 6-6 illustrates the residual distributions.  Each of 

the models’ residual was generally normally distributed, although the Time Series 

model’s residuals were more widespread.  The STARMA model produced the largest 

percentage of estimates within the +/-5% range, and was closely followed by the 

Regression, C-STARMA, and Group models.  In addition, the majority of the results 

from these models fell within the +/-15% range.  The multi-variate models that took into 

consideration the spatial characteristics of the data outperformed the univariate models. 

Table 6-6: Error Distributions for Volume - Detector 2027 

Detector 2027 Model Error Distribution - Volume 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5%5% to 15% 15% to 25%> 25%

Historical Average 1.1 5.8 26.3 37.4 20.5 5.8 3.2 
Regression 0.0 1.9 20.1 57.9 16.8 1.9 1.5 
Time Series 3.9 7.2 23.7 25.4 20.4 10.2 9.3 

STARMA 0.0 1.1 17.7 59.0 18.8 2.4 0.9 
C-STARMA 0.0 3.0 21.0 49.0 19.0 4.0 3.0 

Group 1.0 3.0 17.0 56.0 17.0 1.0 5.0 
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Figure 6-6: Volume Error Distribution - Detector 2027 Models 
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Table 6-7 and Figure 6-7 present the residual distributions for occupancy 

imputation in the detector 2027 scenario.  The residuals are distributed across the ranges 

for most of the models, except for the C-STARMA and Group model, which are 

relatively normally distribution.  The Group model produced the largest percentage of 

estimates within the +/-5% range, and is closely followed by the C-STARMA model. 

Table 6-7: Error Distributions for Occupancy - Detector 2027 

Detector 2027 Model Error Distribution - Occupancy 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5% 5% to 15% 15% to 25% > 25%

Historical Average 6.3 12.7 26.3 24.6 9.9 14.2 6.5 
Regression 4.7 11.3 19.1 12.8 20.6 9.8 21.7
Time Series 8.6 12.7 17.7 19.2 14.3 8.6 18.8

STARMA 3.0 11.1 23.6 24.7 20.2 8.7 8.7 
C-STARMA 2.0 6.0 15.0 32.0 22.0 14.0 9.0 

Group 7.0 6.0 18.0 33.0 24.0 10.0 2.0 
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Figure 6-7: Occupancy Error Distribution - Detector 2027 Models 
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Table 6-8 presents the distribution of the models’ residuals for V+KO imputation 

in the detector 2027 scenario.  Again, we observe that multi-variate models produced 

residuals that are ideally normally distributed and outperformed the univariate models.  

The Group model produced the largest percentage of estimations within +/-5% range, and 

closely followed by the C-STARMA and Regression models.  Figure 6-8 illustrates the 

residual distributions of these models.  The models that emphasized the spatial nature of 

the detector data (Regression, C-STARMA, and Group models) indicated significant 

precision in imputation of V+KO data. 

Table 6-8: Error Distributions for V+KO - Detector 2027 

Detector 2027 Error Distribution - V+KO 

MODEL < -25% -25% to -
15% 

-15% to -
5% 

-5% to 
5% 

5% to 
15% 

15% to 
25% > 25%

Historical Average 1.1 6.8 25.8 36.0 19.1 7.5 3.7 
Regression 0.0 0.6 21.2 50.4 23.1 2.6 2.2 
Time Series 4.2 6.5 24.7 24.7 17.9 10.9 11.1

STARMA 1.2 9.5 25.3 31.8 16.5 8.1 7.7 
C-STARMA 0.0 2.0 18.0 52.0 19.0 5.0 3.0 

Group 5.0 1.0 17.0 55.0 17.0 9.0 1.0 
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Figure 6-8: V+KO Error Distribution - Detector 2027 Models 
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6.3 Results of Models Using Downstream Detectors Only: Detector 2037 

This traffic scenario features the use of only downstream detectors to estimate 

traffic data at the specified location.  Table 6-9 presents the MAPE performance measure 

for each of the models at estimating volume, occupancy, and V+KO for the detector 2037 

scenario.  As with the other scenarios, we observe that the multivariate, spatial models 

outperformed the univariate models.  The C-STARMA produced the lowest MAPE 

numbers for volume and V+KO estimations, while the Group model performed the best 

at estimating occupancy data.  Figure 6-9 illustrates the MAPE results for each of the 

models. 

Table 6-9: Mean Absolute Percentage Error (MAPE) - Detector 2037 Scenario 

Detector 2037 Mean Absolute Percentage Error (%) 
MODEL MAPE (Volume) MAPE (Occupancy) MAPE (V+KO)

Historical Average 8.3 12.3 8.8 
Regression 6.7 12.2 9.0 
Time Series 12.4 17.3 12.9 

STARMA 6.5 10.7 10.8 
C-STARMA 6.3 10.8 6.6 

Group 6.4 10.1 6.6 
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Figure 6-9: MAPE Results - Detector 2037 
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Table 6-10 presents the distribution of the detector 2037 volume residuals.  Figure 

6-10 illustrates how each of the models’ residuals is normally distributed.  We again 

observe that the multivariate spatial models produced the largest percentages of 

estimations within the +/-5% range. 

 

Table 6-10: Error Distributions for Volume - Detector 2037 

Detector 2037 Model Error Distribution – Volume 

MODEL < -25% -25% to 
-15% 

-15% to
-5% -5% to 5%5% to 15% 15% to 25%> 25%

Historical Average 0.5 6.1 27.4 38.8 19.3 6.5 1.4 
Regression 0.2 3.9 24.9 48.8 17.7 4.4 0.2 
Time Series 1.8 9.8 23.2 28.6 18.6 9.7 8.8 

STARMA 0.2 2.0 22.3 50.6 19.2 5.5 0.2 
C-STARMA 0.0 2.0 22.0 52.0 20.0 5.0 0.0 

Group 0.0 5.0 18.0 53.0 21.0 3.0 0.0 
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Figure 6-10: Volume Error Distribution - Detector 2037 Models 
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Table 6-11 and Figure 6-11 present the error distributions for estimating 

occupancy in the detector 2037 scenario.  The residual distribution for this particular 

model was closer to the ideal normal distribution than those residual found in the detector 

2001 and 2027 scenarios.  Although residuals were more distributed across the ranges, a 

larger percentage of these models’ errors concentrated in the +/-15% range.  The Group 

model produced the largest number of estimations within the +/-5% range. 

 
Table 6-11: Error Distributions for Occupancy - Detector 2037 

Detector 2037 Model Error Distribution – Occupancy 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5%5% to 15% 15% to 25%> 25%

Historical Average 4.2 13.2 24.9 27.4 15.7 8.4 6.1 
Regression 3.2 13.4 25.7 27.9 14.6 8.0 7.1 
Time Series 6.0 12.5 18.8 23.0 13.9 12.3 13.7

STARMA 0.9 7.7 24.5 30.4 20.0 11.3 5.2 
C-STARMA 2.0 11.0 26.0 30.0 20.0 7.0 4.0 

Group 5.0 8.0 20.0 35.0 22.0 8.0 1.0 
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Figure 6-11: Occupancy Error Distributions - Detector 2037 Models 
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Table 6-12 presents the distribution of the models’ residuals for V+KO imputation in the 

detector 2037 scenario.  Again, we observe that multi-variate models produced residuals 

that are ideally normally distributed and outperformed the univariate models.  The C-

STARMA and Group models produced the largest percentage of estimations within +/-

5% range.  Figure 6-12 illustrates the residual distributions of these models.  The models 

that emphasized the spatial nature of the detector data (Regression, STARMA, C-

STARMA, and Group models) indicated significant precision in imputation of V+KO 

data. 

Table 6-12: Error Distributions for V+KO - Detector 2037 

Detector 2037 Error Distribution - V+KO 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5%5% to 15% 15% to 25%> 25%

Historical Average 0.7 7.4 30.2 35.3 17.5 6.8 2.1 
Regression 3.0 3.6 27.5 44.4 16.4 4.8 0.4 
Time Series 1.9 10.0 23.2 27.0 19.0 9.1 9.8 

STARMA 4.4 1.6 22.5 45.4 19.3 6.7 0.2 
C-STARMA 0.0 2.0 24.0 49.0 19.0 6.0 0.0 

Group 0.0 3.0 22.0 49.0 20.0 6.0 0.0 
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Figure 6-12: V+KO Error Distribution - Detector 2037 Models 
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6.4 Results of Models Using Extended Network Data 

Table 6-13 and Figure 6-13 present the MAPE results of the detector 2001 models 

developed using the extended data set from the Reston Area Network.  These models 

imputed traffic data for detector 2001 using detectors throughout the arterial network.  

Again, we observe that the multivariate spatial models outperformed the univariate 

models for traffic data imputation.  The Group and C-STARMA models produced the 

best MAPE numbers across the three traffic data elements.  This particular scenario 

validates the utility of the C-STARMA approach over other spatially oriented models, 

such as the STARMA.  Note the comparatively larger value of the occupancy MAPE 

value of the STARMA model.  This may be attributed to the significantly larger number 

of input variables this model included in its final composition.  Recall that the STARMA 

model includes all input variables and then performs backwards selection to prune its 

variables.  The final STARMA model in this case still included a larger number of input 

variables than the C-STARMA.  Since these variables did not significantly contribute to 

the strength of the STARMA model, they most likely induced more noise into the model.  

The C-STARMA occupancy model was more parsimonious in its final variable selection. 

Table 6-13: MAPE Results - Detector 2001 Using Extended Data Set 

Detector 2001 w/ Extended Network Data - Mean Absolute Percentage Error (%) 
MODEL MAPE (Volume) MAPE (Occupancy) MAPE (V+KO)

Historical Average 8.4 31.0 11.5 
Regression 8.8 17.4 8.4 
Time Series 11.3 42.1 14.6 

STARMA 10.0 41.1 12.5 
C-STARMA 5.4 17.6 6.1 

Group 5.2 17.3 6.0 
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Figure 6-13: MAPE Results - Detector 2001 Models using Extended Data Set 



  85  

 

Table 6-14 presents the distribution of the models’ residuals for volume 

imputation in the detector 2001 extended network data scenario.  Figure 6-14 illustrates 

the residual distributions.  Each of the models’ residual was generally normally 

distributed, although the Regression model’s residuals were skewed negative.  The Group 

and C-STARMA models produced the largest percentage of estimates within the +/-5% 

range.  When exposed to a larger set of data sources, the C-STARMA model’s precision 

was above all other models in imputing volume data.  The Group volume model featured 

a large bias towards the C-STARMA model. 

 
Table 6-14: Volume Error Distribution - Detector 2001 Using Extended Network Data 

Detector 2001 w/ Extended Data Set Model Error Distribution - Volume 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5%5% to 15% 15% to 25%> 25%

Historical Average 0.5 6.0 29.3 37.2 20.4 4.6 2.1 
Regression 4.0 14.0 41.0 37.0 4.0 0.0 0.0 
Time Series 1.8 8.4 21.6 31.8 20.7 9.0 6.8 

STARMA 4.0 5.0 21.0 38.0 23.0 6.0 4.0 
C-STARMA 1.0 2.0 21.0 58.0 18.0 1.0 0.0 

Group 0.0 1.0 20.0 59.0 19.0 1.0 0.0 
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Figure 6-14: Volume Error Distribution - Detector 2001 Models Using Extended Data Set 
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Table 6-15 and Figure 6-15 present the residual distributions for occupancy 

imputation in the detector 2001 extended network data scenario.  The residuals are 

distributed across the ranges for most of the models, except for the C-STARMA and 

Group model, which are relatively normally distribution.  The Group model produced the 

largest percentage of estimates within the +/-5% range, and is closely followed by the C-

STARMA model.  The Group occupancy model featured a large bias towards the C-

STARMA model. 

Table 6-15: Occupancy Error Distribution - Detector 2001 Models Using Extended Data Set 

Detector 2001 w/ Extended Network Data Model Error Distribution - Occupancy 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5%5% to 15% 15% to 25%> 25%

Historical Average 26.1 11.6 8.1 16.1 14.2 9.8 14.0
Regression 13.0 9.0 15.0 24.0 20.0 9.0 11.0
Time Series 22.5 10.5 10.7 10.2 9.1 8.1 29.0

STARMA 29.0 7.0 8.0 11.0 9.0 9.0 27.0
C-STARMA 13.0 9.0 15.0 25.0 19.0 9.0 10.0

Group 15.0 11.0 15.0 26.0 17.0 9.0 8.0 
 
 
 
 



  88  

 

Historical Average Model
Error Distribution

Detector 2001 Occupancy

0.26

0.12
0.08

0.16 0.14
0.10

0.14

0.00

0.10

0.20

0.30

0.40

0.50

< -25 -25 to -
15

-15 to -5 -5 to 5 5 to 15 15 to 25 > 25

Range

Pe
rc

en
t

Regression Model w/ Extended Data Set
Error Distribution

Detector 2001 Occupancy

0.13
0.09

0.15

0.24
0.20

0.09 0.11

0.00

0.10

0.20

0.30

0.40

0.50

< -25 -25 to -
15

-15 to -5 -5 to 5 5 to 15 15 to 25 > 25

Range

Pe
rc

en
t

 

Time Series Model
Error Distribution

Detector 2001 Occupancy

0.22

0.11 0.11 0.10 0.09 0.08

0.29

0.00

0.10

0.20

0.30

0.40

0.50

< -25 -25 to -
15

-15 to -5 -5 to 5 5 to 15 15 to 25 > 25

Range

Pe
rc

en
t

STARMA Model w/ Extended Data Set
Error Distribution

Detector 2001Occupancy

0.29

0.07 0.08
0.11 0.09 0.09

0.27

0.00

0.10

0.20

0.30

0.40

0.50

< -25 -25 to -
15

-15 to -5 -5 to 5 5 to 15 15 to 25 > 25

Range

Pe
rc

en
t

 

C-STARMA Model w/ Extended Data Set
Error Distribution

Detector 2001 Occupancy

0.13
0.09

0.15

0.25

0.19

0.09 0.10

0.00

0.10

0.20

0.30

0.40

0.50

< -25 -25 to -
15

-15 to -5 -5 to 5 5 to 15 15 to 25 > 25

Range

Pe
rc

en
t

Group Model w/ Extended Data Set
Error Distribution

Detector 2001 Occupancy

0.15
0.11

0.15

0.26

0.17

0.09 0.08

0.00

0.10

0.20

0.30

0.40

0.50

< -25 -25 to -
15

-15 to -5 -5 to 5 5 to 15 15 to 25 > 25

Range

Pe
rc

en
t

 
 

Figure 6-15: Occupancy Error Distribution - Detector 2001 Models Using Extended Data Set 
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Table 6-16 presents the distribution of the models’ residuals for V+KO 

imputation in the detector 2001 extended network data scenario.  All the models’ 

residuals roughly normally distributed, however, it is clear the C-STARMA and Group 

models outperformed all others by producing the largest percentage of estimations within 

+/-5% range.  Figure 6-16 illustrates the residual distributions of these models.  The C-

STARMA and Group models indicated significant precision in imputation of V+KO data 

over the other models. 

Table 6-16: V+KO Error Distribution - Detector 2001 Models Using Extended Data Set 

Detector 2001 w/ Extended Network Data Error Distribution - V+KO (where K=20) 

MODEL < -25% -25% to 
-15% 

-15% to 
-5% -5% to 5% 5% to 15% 15% to 25%> 25%

Historical Average 1.6 10.0 29.0 27.7 20.2 6.5 5.1 
Regression 0.0 0.0 7.0 39.0 38.0 13.0 3.0 
Time Series 4.0 9.0 20.5 24.6 19.8 9.8 12.3

STARMA 6.0 8.0 21.0 30.0 19.0 9.0 6.0 
C-STARMA 0.0 2.0 19.0 53.0 22.0 2.0 1.0 

Group 0.0 1.0 20.0 51.0 24.0 3.0 1.0 
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Figure 6-16: V+KO Error Distribution - Detector 2001 Models Using Extended Data Set
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Figures 6-17 and 6-18 graphically illustrate which detectors were selected as 

inputs to the final C-STARMA volume and occupancy models using the extended 

network data set.  Both examples indicate the prudence of the variable selection to create 

parsimonious models that are accurate and precise. 
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Figure 6-17: C-STARMA Model Selected Inputs for Detector 2001 Volume Using Extended Network 
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Figure 6-18: C-STARMA Model Selected Inputs for Detector 2001 Occupancy Using Extended 
Network 
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6.5 Model Evaluation 

We explored six different models to estimate traffic data for the three network 

scenarios.  Table 6-17 highlights the models that produced the best results based upon the 

mean absolute percentage error metric.  The Group and C-STARMA models consistently 

provided the best estimates of volume, occupancy, and V+KO data based on the MAPE 

metric.  The Group model’s final equations were strongly biased towards the C-

STARMA model.  Other models that performed well included the Regression and 

STARMA models.  The common themes among these models were that they relied upon 

multi-variate inputs in their model building procedure and that they took into account the 

underlying spatial relationships among detectors in the arterial network.  These 

particulars models based their imputation on other network detectors as surrogate 

measures for data at the location of interest.  Data from network detectors were utilized to 

impute data at the location of interest.  These models also exploited the spatial correlation 

among the network’s detectors. 

Table 6-17: Model producing the best MAPE results 

MODEL SCENARIO 

Metric Upstream 
Detectors 

Up / Down stream
Detectors 

Downstream 
Detectors 

Extended 
Network Data 

Volume C-STARMA STARMA C-STARMA Group 

Occupancy Regression Group Group Group 

V+KO Group STARMA C-STARMA 
/ Group Group 
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Table 6-18 summarizes the model precision at imputing volume and occupancy.  

A model’s precision was judged by the percentage of estimates (residuals) that fell within 

the +/- 5% range.  The results listed validate the utility of the Group and C-STARMA 

models.  The Group model was biased towards the C-STARMA model, and performed 

well at estimating the traffic data in each case. 

Table 6-18: Models producing the largest number of estimations within +/- 5% range 

MODEL SCENARIO 

Metric Upstream 
Detectors 

Up / Down stream
Detectors 

Downstream 
Detectors 

Extended 
Network Data 

Volume C-STARMA STARMA Group Group 

Occupancy C-STARMA Group Group Group 

V+KO C-STARMA Group C-STARMA 
/ Group C-STARMA 

6.5.1 Historical Average 

These naïve models performed reasonably well given their simplicity and that fact 

that signal control systems already calculate these values.  They perform well under 

situations when current the traffic match those of normal historical conditions.  However, 

they were not accurate estimators of missing data in situations where traffic conditions 

deviate from historical patterns. 

6.5.2 Regression 

The Regression models based estimations upon traffic data from neighboring 

detectors of the detector of interest.  The model development process was intuitive since 

the correlation among detectors within the sub-network can be visually identified via the 
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traffic data plots.  In essence, the Regression models utilized surrogate sensors as 

estimators and took advantage of spatial correlations among these network detectors.  

This model type performed well for estimating traffic data across all four network 

scenarios.  In addition, implementation of this model type for ITS applications should be 

simple provided there is sufficient availability and proximity of neighboring detectors to 

the points of interest.  The traffic engineer would need to build regression models for 

every detector in the network and to specify any other detectors that would serve as 

parameters to each model. 

6.5.3 Time Series 

Our implementations of this model type were consistently the worst performing 

estimators of traffic data in all four network scenarios.  These models only used time 

series data from the detector of interest to estimate data for that same detector.  The 

inherent problem with implementing this model for practical purposes is that historical 

data may not be available.   Although our models produced comparable results to those 

by Williams et al. (1999), we found that our spatially oriented models outperformed 

univariate time series applications. 

6.5.4 STARMA 

The Reston Area Network of system detectors was a good candidate application 

for this model type.  The STARMA model extended the time series model by including 

time series data from surrogate sensors, in addition to the data from the sensor of interest.  

The STARMA models implemented in this research performed very well at estimating 

traffic data across the network scenarios.  It provided better results than the time series 
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models that used data only from the single detector of interest.  The STARMA model’s 

strength lies in that it exploited the spatial correlation among the network’s detectors. 

6.5.5 C-STARMA 

The C-STARMA model was a new development proposed by this research.  This 

model was based upon the STARMA model, but extended that procedure to factor in 

contemporaneous variables to its model composition.  The C-STARMA combined the 

strengths of the Regression and STARMA models by exploiting contemporaneous data, 

time series data, and the spatial relationships among the detectors. 

This new model type consistently performed well, and outperformed the other 

models in the majority of the analytical scenarios.  We observed that it consistently 

produced the lowest MAPE scores for imputing traffic data, as well as showing 

remarkable precision. 

The C-STARMA model building procedure was a primary factor to its strong 

performance at data imputation even in situations when a large set of input variables 

(detectors) was present.  Recall that the model featured a preliminary feature selection 

step that performed an initial screening of the available input data.  This step was critical 

in eliminating the insignificant data sources and narrowing down the list to only those 

sources that indicated (spatial) correlation to the location of interest.  This benefit was 

observed when compared to the STARMA model, which accounted for all the initial 

variables in its model, and then performed backward selection to prune variables.  The C-

STARMA implemented Stepwise Regression in building its model starting with fewer 
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variables.  Ultimately, the C-STARMA models were simpler and contained fewer 

parameters than those of the STARMA class. 

6.5.6 Group 

The Group model was implemented using a regression model with the other 

models as input parameters.  As we described, the multi-variate models provided very 

good estimates of missing traffic data, and the group model expanded upon that premise 

by providing most of the low MAPE values.  The specific equations for each of the 

network scenarios are listed below. The C-STARMA was consistently given the highest 

weighting in all of the group models.  This was expected since that particularly model 

used the maximum data from the network at any given interval.  The Group model may 

be a good estimator for research purposes; however, it would be impractical to implement 

for signal control systems due to the amount of processing involved to generate the input 

models. 

6.5.6.1 Network Scenario 1: Upstream detectors only as model input 

Volume regression equation: 

2001 Vol = -7.9 +  .33 Historical Average + .25 Regression + .01 Time Series 

        -.01 STARMA + .45 C-STARMA 

Occupancy regression equation: 

2001 Occ = .04 + .08 Historical Average + .05 Regression - .26 Time Series 

        + .08 STARMA + .83 C-STARMA 
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6.5.6.2 Network Scenario 2: Both upstream and downstream detectors as model input 

Volume regression equation: 

2027 Vol = 5.6 + .11 Historical Average + .83 Regression  

       - .01 Time Series - 0.04 STARMA + .12 C-STARMA 

Occupancy regression equation: 

2027 Occ = .18 + .11 Historical Average + .17 Regression  

        + .05 Time Series - .14 STARMA + .74 C-STARMA 

6.5.6.3 Network Scenario 3: Downstream detectors only as model input 

Volume regression equation: 

2037 Vol = 1.5 + .18 Historical Average + .08 Regression  

        - .06 Time Series + .18 STARMA + .78 C-STARMA 

Occupancy regression equation: 

2037 Occ = - .25 + .32 Historical Average + .10 Regression  

        + .01 Time Series - .06 STARMA + .71 C-STARMA 

6.5.6.4 Extended Network Data Model 

Volume regression equation: 

2001 Vol = -9.1 + .16 Historical Average + .09 Regression - .03 Time Series 

        +  .06 STARMA + .72 C-STARMA 

Occupancy regression equation: 

2001 Occ = .11 + .07 Historical Average + .55 Regression + .004 Time Series 
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       + .04 STARMA + .34 C-STARMA 

6.6 Summary 

Due to the underlying spatial relationship among system detectors in the arterial 

network, the multivariate models that factored in this characteristic performed better than 

the univariate models at imputing traffic data.  The spatially oriented models, such as the 

Regression, STARMA, C-STARMA, and Group models consistently outperformed the 

univariate models (Historical Average, Time Series) when evaluated by the mean 

absolute percentage error metric for volume, occupancy, and V+KO estimations.  

Furthermore, these models were quite precise by producing a large percentage of 

estimates that fell within the +/- 15% error range. 

Of the spatial models, the C-STARMA was validated to the best performing 

model in each of the network scenarios.  This model type drew from the strengths of the 

Regression and STARMA models by exploiting the spatial correlation among detectors 

as well as contemporaneous data.  Finally, the C-STARMA model building procedure 

lead to parsimonious model compositions even in cases of large numbers of input 

sources. 
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7.0 CONCLUSION 

The objective of this thesis was to develop and evaluate alternative methods to 

impute missing data that are prevalent in intelligent transportation systems applications.  

The scope was to estimate missing data from off-line system detectors that capture traffic 

data (volume and occupancy) on arterial roadways.  This research investigated the 

potential of using surrogate data sources, such as neighboring detectors, to accurately 

estimate the missing data at an off-line detector.  Our assumption was that neighboring 

detectors possess a spatial correlation that can be applied to estimate traffic data for any 

given off-line detector. 

We implemented both univariate and multivariate models and compared their 

performance using historical traffic data from the Reston Area Network of system 

detectors.  We observed that models that used maximum data on current traffic conditions 

performed the best.  The models that used data from neighboring detectors as input 

parameters provided accurate estimations of traffic data for any given location.  These 

models also performed reliably across a range of network scenarios. 

7.1 Research Findings 

This research was able to demonstrate that available network data sources, such as 

neighboring detectors, were able to serve as accurate surrogate measures for non-

responsive point sources.  We developed multivariate models that used neighboring 

detectors as input variables to estimate traffic data at a given detector location.  These 

models generally performed better than univariate models that relied solely upon pre-

existing data from the single detector location. 
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7.2 Research Contributions  

7.2.1 Academic Contributions 

The academic contributions from this research were the development and 

proposal of a new model class for data imputation.  The requirements for such a model 

included the ability to use time series data, as well as contemporaneous data, from 

multiple data sources.  In addition, this model type must be able to exploit the underlying 

spatial correlation among data sources.  The development of the C-STARMA model was 

a direct response for the need of a robust imputation of traffic data for any specific 

location when a multitude of surrogate measures were available. 

 The C-STARMA model was based upon the theory of the classical STARMA 

model.  However, the C-STARMA extended the base class to factor contemporaneous 

data into the model composition.  The STARMA class typically utilized time series data 

from spatially correlated sites.  The C-STARMA model included additional parameters to 

account for the availability of contemporaneous data. 

 This research proposed the model building procedure for the C-STARMA model, 

which included innovations to the base class models.  These innovations included an 

initial step to perform variable reduction (feature selection) and an alternative approach to 

parameter estimation. 

The variable reduction step is the first step performed in the model building 

procedure prior to determining the C-STARMA model class.  This is a critical step to 
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reduce the number of potential model inputs to only those that are significantly correlated 

to the dependent variable. 

Once the model class has been determined, the next step was to estimate the 

model’s parameters.  This research proposed the application of Stepwise Regression as 

the parameter estimation technique for the linear C-STARMA models, which consists of 

parameters for spatial Regression (contemporaneous data) and autoregressive 

coefficients.  Recall that the base technique (STARMA) applied backward selection of 

variables, which enters all of the variables in the block in a single step and then removes 

them one at a time based on removal criteria.  Conversely, the C-STARMA applies the 

Stepwise, or Forward variable selection, which enters the variables in the block one at a 

time based on entry criteria.  Stepwise variable entry and removal examines the variables 

in the block at each step for entry or removal.  Empirically, we observed that this 

parameter estimation technique produced simpler, more parsimonious models. 

This development of the C-STARMA model provides researchers with a powerful 

technique to accurately account for missing data in current transportation studies, such as 

travel time estimation, optimal selection and placement of detectors, and traffic 

prediction algorithms. 

7.2.2 Application To ITS Traffic Signal Control 

This research investigated the suitability of estimation techniques to account for 

missing data prevalent in intelligent transportation systems applications.  Specifically, 

univariate and multivariate models were derived to estimate replacement values for 
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missing data from off-line system detectors or traffic databases in support of traffic signal 

control systems.   

The results of this research have proved to be promising to support diverse 

applications in the intelligent transportation systems domain.  Next generation signal 

control systems that rely upon real-time surveillance would benefit by implementing 

these estimation techniques as a fault tolerant mechanism.  Civil transportation authorities 

can apply these techniques to support traffic signal systems planning, budgeting, and 

operations.  Furthermore, ITS researchers have additional techniques to account for 

missing data in transportation databases. 

7.2.2.1 Next Generation Signal Control Systems 

Next generation signal control systems critically depend upon data input from 

traffic surveillance devices.  Devices range from single-wire loop detectors to video 

cameras.  However, these control systems do not have fault tolerant mechanisms in cases 

when detectors go off-line. 

The techniques investigated by this research support the implementation of fault-

tolerant mechanisms to solve this problem.  Signal control systems can divert operations 

that rely upon live surveillance to estimated traffic data based upon on-line network 

sensors.  The available sensors act as surrogate measures and provide a basis for accurate 

estimation of missing traffic data. 

Of the multi-variate models, the regression model would be the quickest and 

easiest model to implement in signal control systems.  This would entail developing a 

model for each sensor within the network, which includes a feature selection to determine 
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which network sensors are correlated.  These models can easily be coded into the signal 

control system to support traffic responsive or traffic adaptive control mechanisms. 

7.2.2.2 Optimal Selection and Placement of Traffic Sensors 

These estimation techniques would also benefit civil transportation departments 

that are considering adding new detection locations or implementing expensive 

surveillance devices, such as video cameras.  Historically, there has been no scientific 

manner to select the installation location and number of surveillance devices to employ.  

These authorities can apply the traffic estimation techniques from this research to 

determine the quality of data from current surveillance devices, and ultimately to 

determine the optimal location and number of new detectors to deploy. 

Traffic engineers can apply this research towards determination of optimal 

placement of sensors to capture maximum data with few resources (critical sensors).  

This could feasibly reduce the number of sensors to field and to maintain if system can 

accurately estimate traffic conditions based upon a few critically situated sensors.  Thus, 

both engineering and financial benefits can be realized from this research. 

7.2.2.3 Support of On-Going Traffic Studies 

There is a significant amount of on-going research in ITS field that relies upon 

historical traffic data archived databases that plagued with erroneous or missing data.  

These techniques provide researchers another means to accurate and reliably substitute 

for missing data. 
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Civil transportation authorities, such as the VDOT STSS, rely upon historical as 

well as current sensor data to evaluate current timing plans and develop new ones.  In 

cases where critical detectors are unavailable, the techniques in this research enable 

traffic engineers to still get full and accurate depiction of their jurisdiction’s traffic 

condition.  In addition, traffic engineers can now more accurately evaluate and compare 

the application of fixed timing plans against traffic responsive or adaptive control 

mechanisms.  

7.3 Recommendations for Further Research 

This research theoretically demonstrated the applicability of imputation 

techniques to support fault-tolerant mechanisms for real-time signal control systems.  

Further research can be performed to justify this claim by automating these imputation 

techniques to estimate missing data in real-time systems.  Such an application can be 

executed in real-time and automates the selection of available detectors as model inputs 

to estimate traffic data for any given point detector.  Further research should simulate 

traffic responsive or adaptive networks to investigate the performance of these imputation 

techniques in real-world applications. 

Furthermore, our research findings can support a wide range of current ITS 

research activities that require a full account of traffic data, such as traffic monitoring, 

traffic control, and data mining. 
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7.3.1 Assumptions on Automating the C-STARMA Methodology 

This section lists a set of assumptions about the C-STARMA modeling procedure 

to enable its automation for use in real-time ITS (signal control) applications.  The C-

STARMA model was described as being based upon the Regression and STARMA 

techniques.  It is possible that with enough assumptions to reduce the implementation 

complexity, the performance of the C-STARMA model may approach that of the 

Regression and/or STARMA models.  However, the benefit is that the implementation is 

simplified and automation is made feasible without significant analyst intervention during 

the model diagnosis/development, implementation, and execution phases.  These 

assumptions include, but are not limited to, the following: 

o Select system detectors located downstream from the detector to be modeled.  

For a detector along the main corridor, the selected input sources should be 

the detectors along the main corridor approximately one to two intersections 

adjacent to the intersection of interest.  It is also appropriate to select upstream 

detectors only, or a combination of both upstream and downstream detectors 

as model inputs.  In these cases, the spatial order should be limited to two 

intersections adjacent to the intersection of interest. 

o The C-STARMA model can be appropriately limited to linear models, i.e., 

include only the autoregressive components in addition to the 

contemporaneous components.  For 15-minute data evaluated in this research, 

the autoregressive time lag component can be set at one, i.e., zl(t-1) which is 

the observation of the random variable Z at spatial lag l at time t-1. 
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APPENDIX A: C-STARMA MODEL IMPLEMENTATION PROCEDURE 

This appendix describes a step-by-step procedure for automating the C-STARMA 

model for real-time ITS applications to impute 15-minute traffic data (volume and 

occupancy).  The following procedure takes into account the assumptions described in 

Section 7.3 to enable the automation of the C-STARMA methodology without significant 

analyst intervention during the model diagnosis/development, implementation, and 

execution phases.  These assumptions lead to an abridged version of the C-STARMA 

model building methodology suitable for automation. 

1. Collect Data: 

Collect 15-minute arterial network (system detector) data for the detector of interest, 

and from detectors at the same intersection.  Collect data from system detectors at 

adjacent intersections up to two intersections away (along the main corridor). 

2. Perform Model Identification: 

The model should specify the following variables as candidate input parameters: 

o Contemporaneous Variables: 

� zl(t) where l is the spatial lag indicator which specifies data at 

time interval t for neighboring detectors, 

o Autoregressive Variables: 

� zi(t-1) the autoregressive parameter at the location of interest, 

� zl(t-1) the autoregressive parameters for neighboring detectors. 
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3. Estimate Model Parameters: 

Perform a Stepwise Regression (Linear Least Squares) upon the specified input 

variables.  This step down-selects the significant model input variables and estimates 

their parameter coefficients for the linear model. 

4. Perform Model Diagnosis: 

Execute the derived model to impute traffic data at the point of interest.  Compare the 

estimated values against the actual values.  The Mean Absolute Percentage Error 

(MAPE) is a suitable statistic to evaluate model performance.  If the model is 

determined to perform sufficiently well, then it can be applied to impute traffic data 

for real-time ITS applications.  However, if the model is insufficient, then the analyst 

will need to revert back to Step 2 above and select detectors (inputs) from alternative 

network scenarios (e.g., downstream-only, upstream-only, or both up-/down-stream 

detectors). 


