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Introduction 

This paper serves as a reference guide to analytic tools and approaches to data analysis, text 
mining, predictive modeling and decision analysis commonly found in the financial services, 
telecommunications, direct marketing and e-commerce industries, and to the latest analytic 
technologies developed in academia.  

The purpose is to give non-technical readers some background into some of the new and 
popular prediction and decision technologies, and remind more technical readers of some of the 
key strengths and weaknesses. No attempt is made to make direct comparisons of techniques 
since the features tend to be application dependent. Nor is this paper intended to be an 
exhaustive or complete discussion of each technique. 

A Guide for the Non-Technical Reader 
At Fair Isaac we sometimes classify analytic techniques as belonging to one of four areas—
exploratory data analysis, predictive modeling, optimization and decision analysis. Many of the 
underlying technologies described in this paper are not confined to one of these categories, and 
may in fact be used in multiple areas. As a result, the paper itself does not impose a 
classification scheme on the techniques discussed. Rather we have simply listed them in 
alphabetic order for ease of reference. However, for this introduction, we have listed each 
technique as belonging to one of the four categories described below in order to indicate its 
most common area of use. 

Exploratory analysis (or undirected data mining) seeks to establish relationships in the data to 
gain insight. Within this exploration, no specific outcome is assumed. An example of this group 
of techniques would be cluster analysis, used to develop a strategic marketing segmentation. 
Other techniques in this category are factor and principal component analyses. 

Text mining technologies are a special category of exploratory analysis techniques that 
identify associations in unstructured data. Emails, financial reports and collection notes 
are examples of unstructured text data that exist in huge quantities in every 
organization. Technologies such as link analysis and context vectors allow one to 
understand and capture the relationships between entities in unstructured data. 

Predictive modeling (sometimes called directed data mining) seeks to identify and 
mathematically represent underlying relationships in historical data, in order to explain the data 
and make predictions or classifications about new data. Predictive models are frequently used as 
ways to summarize large quantities of data as well as to increase the value of data. In the 
financial services, telecommunications, direct marketing and e-commerce industries, they are 
commonly used as inputs to decisions. An example would be the use of logistic regression to 
classify prospects as good or bad credit risks. Other techniques in this category are boosting, 
collaborative filtering, discrete choice modeling, discriminant analysis, INFORM, log-linear 
models, neural networks, pattern recognition, regression, support vector machines, survival 
analysis and tree modeling methods. Expert systems and RFM also fit into this category, but are 
different in that they can be derived judgmentally without historical data. 

Optimization techniques seek to efficiently and effectively search across a set of possible 
solutions to a problem (either constrained or unconstrained) with the goal of maximizing or 
minimizing a particular mathematical function. Techniques in this category are genetic 
algorithms, linear programming and non-linear programming. Although we do not highlight 
them within the sections, several of the predictive modeling and decision analysis techniques 
rely on optimization techniques to reach their results.  
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Decision analysis goes one step further. By modeling the decision itself, it allows for the 
optimal decision to be identified. The purpose of decision analysis is to assist decision makers 
in making better decisions in complex situations, usually under uncertainty. Components of 
decision analysis discussed in this paper include key concepts and tools, graphical decision 
models, multiple objective decision analysis, sequential decisions and utility theory. Since 
decision analysis delivers the most value when coupled with active, continuous learning from 
observations, the need for well-planned or designed data is critical in the building of a robust 
decision model. For this reason, it is important to point out the section on experimental design, 
which addresses the importance and approach to well-planned data collection. 

Fair Isaac Philosophy 
At Fair Isaac, our years of experience with noisy and biased data and business constraints have 
led us to value domain expertise and analytic experience as key components in the modeling 
and strategy optimization process. An analytic technique, in and of itself, works only with the 
empirical data provided to it. Often, however, there is more contextual information that should 
be incorporated, either through automated capture of business intelligence or by the imposition 
of operational constraints. Such contexts might include the source of the data; its past and future 
reliability; its deployment mechanism; its cost; and the potential legal, operational or customer 
relationship impact of using certain types of data or using certain criteria for a given decision. 

Fair Isaac favors techniques that allow for the incorporation of prior knowledge beyond that 
provided in a particular dataset in order to create a solution of greater value. You will note that 
some of the strengths and weaknesses listed for each technique allude to this point. While in 
other publications some technologies have been criticized for being naive, the scenarios 
discussed are frequently describing the naive analyst.  

Organizational Structure 

General description  
Each section is introduced with a brief 1-2 page discussion of the technique. Since you may not 
be familiar with some of the terms used in this paper, a glossary is included at the back. Phrases 
in italics are defined in the glossary. Some of these definitions were written to clarify the terms 
as they are used in this paper and ignore their broader interpretation. 

Applications 
To place the techniques in context, we have indicated some of their most common uses. When 
appropriate, we have noted particular business problems to which techniques have been applied 
successfully.  

Strengths and weaknesses 
We have included strengths and weaknesses for the techniques, where appropriate, although 
these are not exhaustive lists. Rarely could a weakness in one situation be a strength in another, 
but often a weakness (or strength) might be irrelevant for a particular application or set of data. 
For example, an inability to handle missing values is only a problem when there are missing 
values. An ability to capture interactions in data is only a positive feature where these are 
suspected to exist. Multivariate normality assumptions are not a problem for linear regression if 
the data are, in fact, multivariate normal. Other issues to consider when evaluating analytic 
techniques include the use of categorical and/or continuous variables, the ease of interpretation 
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of results, the robustness of solutions, the importance of sample size, the ability to handle 
multiple objectives and the ability to engineer solutions. 

References 
Where appropriate, some additional reference material is listed as suggestion for  
further reading.  

Revisions and Updates 
We periodically (though not frequently) update this document, deleting some topics that have 
become less relevant and adding additional sections. In the current version, we have added new 
sections on linear programming and non-linear programming and survival analysis.  

We hope you find this paper useful and welcome your feedback on future improvements. 
Questions or suggestions can be submitted via email to RDPubs@fairisaac.com. 
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Boosting 
Boosting is a general class of technologies for improving the performance of an existing 
prediction technology. Boosting works by sequentially applying a classification algorithm to 
reweighted versions of the training sample. Boosting works particularly well in practice when 
you apply it to a simple (weak) form of an existing technology. For example, consider tree 
technology. Normally when one applies a tree to solve a complex prediction problem, a very 
deep and complicated tree is produced, which works reasonably well as a predictor. However, it 
is possible to produce a very shallow tree with, for example, eight terminal nodes. By itself, this 
shallow tree would not work very well as a predictor; it is called a weak learner. Boosting is a 
way to put many (e.g., 500) weak learners together to produce a very powerful predictor. 

Let’s consider the binary outcome problem of estimating the log odds of a “Good”. Log odds is 
a function defined on the input space of predictor variables—call it ( )xLO . Boosting 
technology will produce an estimate of log odds of the general form 

( ) ( )∑
=

=
R

r
rr gOL

1

ˆ xx λ , 

where the ( )xrg ’s are a whole bunch of weak learners developed by the prediction technology 
that is being boosted. So if a tree is the technology being boosted, then ( )xrg  is a shallow tree. 
The different varieties of boosting technology amount to different methods for deriving 

( )xrr g  and  λ . Two boosting technologies are discussed in more detail below. 

Gradient boosting 
A very general boosting technology, recently developed by Stanford professor Jerome 
Friedman, is called gradient boosting. Analyzing the progress of a typical optimization 
algorithm, which is used to find an estimate of log odds, inspires it.  

The optimization typically takes place in some parameter vector space. An iteration of the 
algorithm is of the form 

rrrr gββ λ+←+1  , 

where rβ  is the current parameter vector and rg  is the gradient of some objective function 
with respect to the parameter vector. The scalar rλ quantifies the amount of movement of the 
algorithm in the direction of the gradient. There are many strategies for choosing rλ . After the 
optimization algorithm has done its job, the optimal parameter vector can be expressed as 

∑
=

λ+=
R

r
rr

2
1

ˆ gββ . 

For gradient boosting, the optimization is done in log odds function space rather than a finite 
dimension parameter vector space. In other words, gradient boosting is a non-parametric 
method. In function space, the gradient is a function, which can be crudely approximated non-
parametrically using the underlying technology. In the case of trees, a shallow tree 
approximates the gradient. The result is a log odds estimate of the form 
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( ) ( ) ( )∑
=

+=
R

r
rr gLOOL

2
1ˆ xxx λ , 

where ( )x1LO  is an initial shallow tree estimate of log odds and the ( )xrg ’s are shallow tree 
estimates of the gradients. For gradient boosting, the amount of movement of the algorithm in 
the direction of the gradient falls short of the line optimization. This idea of falling short 
(shrinkage) is used in gradient boosting as a way to avoid overfitting.  

The gradient in the description above is based on some objective function. Different objective 
functions lead to different results. The objective function takes as its argument the log odds 
function, which is a function defined on input space. So the objective function has the form, 

( )LOF , where LO  is a function of the form ( )xLO . This is an unusual way to look at scoring 
technology. For most technologies, the objective function is defined on some parameter vector 
space.  

The objective function for non-parametric logistic regression is the log likelihood function. It 
can be shown to be 

( ) ( ) ( ){ }



 +−•






 +

= xx LOeLOyELOF 1log
2

1 , 

where y is +1 for the Goods and –1 for the Bads. The expectation is taken over the joint 
distribution of ( )y,x . The Friedman, Hastie, Tibshirani reference below explores in great detail 
the boosting results based on this objective function.  

AdaBoost 
One of the early boosting techniques is called AdaBoost. It is based on the intriguing objective 
function 

( )
( )












=

•− xLO
y

eELOF 2 . 

Why does this objective function make sense? It turns out to be a differentiable—but crude—
approximation to the misclassification cost objective function, when the two types of 
misclassification costs are equal. It is also quite similar in graphical shape to the more complex 
log likelihood objective function. If log odds is positive, then you classify as “Good,” and if log 
odds is negative, then you classify as “Bad”. So it is desirable to have ( )xLO

y
•2  positive as 

much as possible. Hence, the AdaBoost objective function is to be minimized.  

Gradient boosting applied to the AdaBoost objective function yields a fascinating result. It turns 
out that finding the gradient is closely related to estimating log odds with respect to a revised 
sample-weighting scheme. Whatever weak learner is being used, it can handle any sample-
weighting scheme. For each iteration of the boosting algorithm, the sample weights are adjusted 
according to how the last weak learner classified the observations. The sample weights for those 
observations, which were classified correctly, are down-weighted. The amount of down 
weighting depends on the margin of the correct classification. The sample weights for those 
observations, which were classified incorrectly, are up-weighted. The amount of up weighting 
depends on the margin of the incorrect classification. This has a certain intuitive appeal. 
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However, this characterization of the result is due to the idiosyncrasies of the AdaBoost 
objective function, which has no scientific basis. For example, use of the log likelihood 
objective function does not lead to this novel iterative sample-weighting scheme. However, 
boosting with the log likelihood objective function often leads to better results than those 
achieved by AdaBoost. 

Applications 
Boosting can be used to improve the performance of any classification or predictive technology, 
as long as interpretability of the resulting score formula is not at issue. ObjectBoost, a Fair Isaac 
invention, borrows ideas from boosting and support vector machines to yield a powerful way to 
customize a score development to optimize the solution for a specific business goal.  

Strengths 
■ Improves performance of a stand-alone modeling technology. 

■ If the weak learner is simple enough (e.g., stumps—a one split tree), then the resulting score 
is an interpretable Generalized Additive Model (GAM).  

■ Can easily capture non-linear, non-additive relationships in data with proper choice of weak 
learner. 

■ No data structure assumptions.  

■ Handles both continuous and categorical predictors. 

■ Competitive with the state of the art for many objective functions.  

Weaknesses 
■ Difficult to interpret unless the weak learner is very simple. 

■ Score engineering is not feasible with traditional boosting technology. An exception to this 
is Fair Isaac’s ObjectBoost technology, which has score engineering built into its fabric.  

References 
Friedman, Jerome; Hastie, Trevor; and Tibshirani, Robert, Additive Logistic Regression: a 
Statistical View of Boosting, July 23, 1998, a paper downloaded from Jerome Friedman’s web 
page. 

Friedman, Jerome, Stochastic Gradient Boosting, March 1999, a paper downloaded from 
Jerome Friedman’s web page.  

Freund, Y. and Schapire, R.E., Large Margin Classification using the Perceptron Algorithm, 
Machine Learning: Proceedings of the Fifteenth International Conference. Morgan Kaufmann, 
1998. 
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Cluster Analysis  

Cluster analysis encompasses a group of data exploration techniques that is used to search for a 
structure of “natural” groupings of multidimensional objects or observations1 according to their 
degree of similarity or distance. Clustering is distinct from classification methods. Classification 
pertains to a known number of groups (classes) and the operational objective is to assign new 
observations to one of these groups. Cluster analysis is a more primitive technique in that no 
assumptions are usually made concerning the number of groups or the group structure. The 
objective of cluster analysis is to discover natural groupings of the observations such that 
observations in a given cluster tend to be similar in some sense to other observations in the 
same cluster and dissimilar to observations in other clusters. 

For example, the groupings may be defined based on students’ scores across different aptitude 
tests. Students with high verbal ability might tend to cluster into one group while students with 
high artistic ability might tend to cluster into another group. How close should test scores be 
before students are grouped into the same cluster is a question of degree of within-cluster 
similarity and the total number of clusters desired. 

In practice, the most-often-used clustering techniques are hierarchical clustering and non-
hierarchical (disjoint) clustering. The hierarchical clustering is very much a “tree-like” 
procedure. It proceeds by either a series of successive mergers (often called agglomerative 
hierarchical methods) or a series of successive divisions (called divisive hierarchical methods). 
Agglomerative hierarchical methods start with the individual sample points as N clusters of one 
observation each. The number of clusters is then reduced to N-1 by merging two of the points 
into a single group based on some measure of similarity between them, applying some 
optimality criterion. The process is continued until the desired number of groups remains. 
Divisive hierarchical methods work in the opposite direction by starting with one group of N 
observations and dividing this group into smaller groups based on some measure of distance2 
between them until some optimality criterion is satisfied.  

The non-hierarchical clustering techniques are designed to group observations into K disjoint 
clusters so that the total within group distance is minimized. The number of clusters, K, may 
either be specified in advance or determined as part of the clustering procedure. The K-means 
method is a popular non-hierarchical procedure. It first assigns the observations into K initial 
clusters. In each iteration, the distances between an observation’s location (based on the 
observation’s values for the variables that define the clusters) and cluster centers are calculated. 
The observation remains in the same cluster or is assigned to a different cluster according to the 
distances. The cluster centers (means) are then updated. The iterations continue until no more 
reassignments take place. Non-hierarchical/disjoint clustering techniques can handle a much 
larger data set than hierarchical techniques. 

The cluster analysis is often preceded by principal component and/or factor analysis for 
dimension reduction and (if necessary) data preprocessing. Even when dimension reduction 
techniques are used, the selection of variables used to define the clusters often poses a difficult 

                                                 
1 Objects in this case can be either observations OR variables. This paper deals predominantly with identifying 
clusters of observations (cases). Clustering of variables is related to Principal Component Analysis and Factor 
Analysis. See section on Factor Analysis and Principal Component Analysis for brief description of those topics. 
2 In defining similarity/dissimilarity, various distance functions can be used. A commonly used distance is Euclidean 
distance. 
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combinatorial problem. In many cases this may be effectively addressed by optimization 
procedures such as genetic algorithms. 

Applications 
Cluster models resulting from cluster analysis have traditionally been used quite extensively in 
marketing applications to help characterize groups of similar consumers. The ability to better 
understand these groups can lead to more effective messaging, targeting, and new product 
development efforts. More recent extensions to traditional clustering techniques have focused 
on finding clusters related to a specific objective, such as finding groups that are responsive to 
various marketing channels and messages. This is accomplished by using conditional 
distributions across auxiliary variables (such as response) to help drive the selection of cluster 
drivers. This hybrid approach helps ensure the clusters will consist of multi-dimensional 
groupings that are useful with respect to specific objectives. 

Clustering can be used to enhance the performance of scoring models in one of three basic ways: 

■ By including indicators of cluster membership as simple predictors in the scoring model 

■ By including interaction terms involving cluster membership in the scoring model 

■ By building separate scoring models for each cluster 

The approach that should be used depends on the degree to which the drivers of the measure 
being modeled differ in each cluster. 

Strengths 
■ Does not assume any statistical distribution within data 

■ Does not require performance measure. Provides actionable information where no 
performance outcome exists 

■ Results can be presented in a way that is intuitive and easy to explain and understand 

Weaknesses 
■ Most of the clustering techniques are sensitive to outliers and the results could vary 

substantially for different initial seeds3. 

■ Does not handle categorical data (nominal or ordinal) without preprocessing 

■ Results are reliant on the subjective interpretation of “similarity” between observations. 

References 
Johnson, R.A. and Wichern, D.W. (1982), Applied Multivariate Statistical Analysis, Englewood 
Cliffs: Prentice-Hall, Inc. 

Everitt, B. (1974, 1980), Cluster Analysis, 2nd ed., New York: Halsted Press. 

Kaufman, L. and Rousseeuw, P.J. (1990), Finding Groups in Data: An Introduction to Cluster 
Analysis, New York: Wiley & Sons, Inc. 

Sikkonen, J. and Kaski, S. (2002), Clustering Based on Conditional Distributions in an 
Auxiliary Space, Neural Computation Vol. 14 Number 4 

                                                 
3 Seeds refer to the choice of starting locations for the clusters which the analysis proceeds to iteratively adjust. 
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Collaborative Filtering  
Collaborative filtering is a technology utilized primarily to predict individuals’ preferences. The 
concept of collaborative filtering has its origin in information filtering, which guides a reader’s 
choice by filtering a large amount of information and obtaining preferences collaboratively 
based on preferences shared by like readers.  

Collaborative filtering works by first sifting through an individual’s preferences or purchase 
history to find a group of individuals, or a ‘neighborhood’, with similar preferences or purchase 
histories, and then predicting what else the individual will like, based on the collective 
preferences or purchase histories of other individuals in the neighborhood. The predicted 
preferences can then be used to make product or service recommendations to the individual. 
Once a database of preferences, via surveys or transaction history, is accumulated, the following 
general steps can be applied to obtain a recommendation for an individual who supplies his/her 
preferences: 

■ Using a measure of similarity, individuals with similar past preferences are identified. 

■ A weighted average of the preferences for that neighborhood of individuals is calculated;. 

■ The resulting preference function is used to make recommendations to the individual.  

The individual’s preferences are then added to the existing database. As the database grows, so 
does the time to compute the recommendation.  

The basic premise of collaborative filtering is that people with similar tastes tend to like similar 
type of items. In order to work well, collaborative filtering requires a fairly representative 
sample of individuals, and a rich record of preferences or purchase histories from them. For 
example, if no like individuals can be found in the database, the recommendation will either not 
be provided or will be based on individuals with potentially very dissimilar tastes. In addition, 
collaborative filtering is most successful in the recommendation of products and services where 
the decision to purchase is largely driven by qualitative personal “taste” or preference. In the 
business environment where only a small number of complex products (such as financial 
products) are offered or products are purchased infrequently (e.g. durable goods such as 
computers or cars), the collaborative filtering approach may not be the most appropriate or 
effective. Incorporating other factors, such as product pricing, brand, and features directly into 
the preference prediction may lead to a more appropriate prediction and recommendation.  

A variety of alternative technologies has been used effectively for ‘preference’ prediction and 
recommendation. These include: 

■ Segment or cluster popularity-based approach, which finds useful rules (e.g. When people 
buy JAVA books they also buy XML books 70 percent of the time) on pre-defined 
customer segments and/or product group . 

■ A hybrid of collaborative filtering and the segment or cluster popularity-based approach. 

■ Discrete Choice Modeling. 

■ Conjoint analysis. 
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Applications 
Collaborative filtering technology has been applied widely in the last decade to the Internet 
marketing efforts of consumer products that involve a large number of ‘taste’ oriented products 
and large customer bases. Product examples include movies, music, books, food, wine, clothing, 
art, news, Web pages, and so on. In the e-tail environment, it’s often used to suggest products 
based on the purchases of customers with a similar purchasing pattern.  

Collaborative filtering has also been applied to call centers, such that catalogue-based 
businesses can increase sales by cross-selling items based on an individual’s profile, for e-mail 
based marketing campaigns, and internally for knowledge management such as document 
recommendation. 

Strengths 
■ Intuitive, easy to comprehend and implement.  

■ No data structure assumptions.  

Weaknesses 
■ Requires a large sample to make meaningful recommendations.  

■ Erroneous recommendations result when close neighbors don’t exist.  

■ Direct insights into the drivers of the exhibited preferences are difficult to derive. 

■ Does not directly use product or item content information and customer profile or behavior 
information for making recommendations. 

As database size increases, the recommendation computation becomes computationally more 
intensive. 

References 
Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P., and Riedl, J. (1994). Grouplens: An open 
architecture for collaborative filtering of netnews. In Proceedings of the ACM 1994 Conference 
on Computer Supported Cooperative Work, 175-186, New York. ACM.  

Breese J.S., Heckerman D. and Kadie C. (1998). Empirical Analysis of Predictive Algorithms 
for Collaborative Filtering, Proceedings 14th Conference on Uncertainty in Artificial 
Intelligence, Madison WI: Morgan Kauffman.  

Mobasher, B., Colley, R., and Srivastava, J. (2000). Automatic personalization based on Web 
usage mining. Communication of the ACM, Vol. 43, No. 8. 

Kitts, B., Freed, D., and Vrieze, M. (2000). Cross-sell: A Fast Promotion-Tunable Customer-
item Recommendation Method Based on Conditionally Independent Probabilities. In 
proceedings of KDD 2000 conference, 437-446, Boston MA, USA. 

Sarwar, B., Karypis, G., Konstan, J., and Riedl, J. (2000). Analysis of Recommendation 
Algorithms for E-Commerce. In Proceedings of the 2nd ACM E-Commerce Conference 
(EC'00). Oct., 2000 

Fader, P. and Hardie, B. (1996). Modeling Consumer Choice Among SKUs. Journal of 
Marketing Research, 33, 442-452 

Guadagni, P.M. and Little, John D.C. (1998). When and What to Buy: A Nested Logit Model of 
Coffee Purchase. Journal of Forecasting 17, 303-324. 
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Context Vectors™ 
Context Vectors™, developed and patented by Fair Isaac, provide a method for learning 
relationships between arbitrary tokens that occur in groups or sequences. Typical uses include 
text—where the tokens are words and the groups are documents—and transaction data—where 
the tokens are merchant names (credit card data), SKUs (retail data), or telephone numbers (call 
detail data) and the groups are defined by accounts. Each group is the set of tokens frequented 
by a customer. 

The first step in using the technology is to carry out a vector build. This automatically creates a 
set of vectors (one per token) whose relative positions (dot products) represent relationships 
between tokens based on patterns of occurrence of the tokens in a training corpus.  

Given a vector per token, it is possible to compute a vector for any group of tokens—such as a 
text document or the set of merchants visited by a particular customer—as a weighted sum of 
the vectors for the tokens constituting the group. These token and group vectors can then be 
compared to each other and manipulated via standard vector operations.  

There are many ways to use this representation to explore a data set, to create variables for 
predictive models, and to automate decisions. For example: 

■ To search a text database, compute a context vector per document and a context vector for 
the query. Return the documents with vectors that are closest to the query vector. 

■ To select cardholders who would be most interested in an offer from a particular merchant, 
compute a context vector for each account based on which merchants the cardholder has 
shopped at in the past. Return the accounts with vectors that are closest to the target 
merchant vector. 

■ To determine which products to cross-sell online, compute a context vector for the current 
shopping basket based on the products that the customer has already selected or recently 
viewed. Return the SKU with the vector closest to the shopping basket vector. 

■ To segment a cardholder portfolio along behavioral lines, compute a context vector for each 
cardholder and use a clustering technique to automatically assign each cardholder to a 
segment. 

■ To learn which merchants are discount stores and which merchants are luxury brands, 
provide a few examples of each. Use a supervised segmentation technique such as learning 
vector quantization (LVQ) to train a model that automatically assigns merchant vectors to 
specified segments. 

These methods generally mesh easily with other techniques, creating characteristics that can be 
integrated into models that also utilize structured data sources. In some cases, context vectors 
can be used as the primary decisioning mechanism to provide entirely new capabilities. 

Context vector technology is similar to latent semantic indexing (LSI). Functionally, the main 
difference is that with context vectors, it is easy to adjust the prior (expected distribution of 
tokens in the data corpus) to focus on the types of relationship of interest. This is essential for 
dealing with inhomogeneous corpora, such as text where some classes of documents include 
misspellings and others do not, or transaction data where cardholders choose their merchants 
not only based on their interests but also on geographic proximity. 
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Applications 
The context vector technology has been applied to searching text databases, categorizing 
documents to automatically respond to inquiries, mining call center notes, using collectors’ 
notes to choose possible collections actions, detecting fraud, and targeting SKU-, merchant- and 
Internet ad-levels based on the premise that people with similar interests will respond to similar 
offers. 

Strengths 
■ Generalization: similar tokens—such as misspelled words or abbreviations and the 

corresponding correctly spelled word, or similar SKUs—are automatically treated similarly. 

■ The vector build often identifies real relationships that make sense, but that the analysts 
would not have thought of by themselves. 

■ When the order of the tokens is important, context vectors can be combined with time series 
techniques such as hidden Markov models (HMMs) to focus on the relevant characteristics. 

■ Context vectors provide a methodology for dealing with datasets consisting of thousands to 
hundreds of thousands of distinct tokens, making it possible to extract useful information 
from data sources that otherwise would not be utilized. 

Weaknesses 
■ Applying context vector technology to a new domain often requires a lot of domain-specific 

pre-processing, such as equivalencing raw tokens to roll up attributes that are not relevant to 
the particular application. 

■ There is a learning curve—it takes time for an analyst to intuitively understand how choices 
of methods and parameter values affect the performance of the overall system. 
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Decision Analysis: Key Concepts and Tools 
Decision analysis refers to the broad quantitative field, overlapping operations research and 
statistics, that deals with modeling, optimizing and analyzing decisions made by individuals, 
groups and organizations.  

The purpose of decision analysis is to assist decision makers in making better decisions in 
complex situations, usually under uncertainty. The quality of the decisions is measured by their 
expected consequences and the stated preferences of the decision maker(s). The decision 
analytic framework helps the decision maker think systematically about his or her objectives 
and preferences, the structure and uncertainty in the problem, and model quantitatively these 
and other important aspects of the problem and their interrelationships. 

All complex decision problems include the following main elements:  

■ Decisions. 

■ Uncertain events. 

■ Consequences. 

■ Objectives and preferences. 

A decision, , 1, 2,...iD i =  refers to a point in time when the decision maker has to choose one 
alternative, id , out of a domain of available alternatives, that could be discrete (e.g. extend or 
don’t extend a credit offer) or continuous (e.g., the range of credit line assignments from $500 
to $50,000), or a combination of the two. What separates one decision, 1D , from another, 2D , 
is the difference in the information available to the decision maker before each decision is 
made. The information corresponding to a decision is the set of all observations available to the 
decision maker prior to making that decision. 

Uncertain events, ,  1, 2,...jX j = , typically occur interspaced between subsequent decisions. If 

an uncertainty is realized before a decision is made, its outcome, jx  will typically be observed 
by the decision maker before that decision is made. For example, an applicant’s income and 
other credit application information, while uncertain at the time a credit offer decision, 1D , is 
made, will have been realized and observed before the subsequent credit line decision, say 2D , 
is made. Still, at the time 2D  is made, there is a number of unresolved uncertainties, like the 
true credit worthiness of the applicant and his or her future use of the credit and repayment 
patterns. Together with the decisions already made, such remaining uncertainties determine the 
consequences to the decision maker, and therefore need to be estimated upfront in the form of 
probability distributions. 

The consequences, ,  1, 2,...kV k = , to the decision maker are the results of, and determined by, 
the alternatives chosen at all decision points iD , and the outcomes of the uncertain events jX 4. 
They are themselves uncertain at the time all decisions need to be made and are closely related 

                                                 
4 That is, each kV  is a function of all decisions made { ,  1, 2,...}iD i≡ =D  and all realized events 

{ ,  1, 2,...}jX j≡ =X : ( , ),  1, 2,...k kV V k= =D X .  



A Discussion of Data Analysis, Prediction and Decision Techniques  

Copyright © 2001-2003 Fair Isaac Corporation. All rights reserved.  16

to the objectives of the decision maker. For example, the cost of a marketing campaign, and its 
size, revenue and loss to a portfolio, are all consequences. 

The decision maker’s objectives, M, in solving a decision problem are the quantities he or she 
cares about, including their preferred direction. Maximizing a portfolio’s size is an example of 
an objective; minimizing a portfolio’s loss is an example of another.  

Rarely in realistic decision problems is there a single objective. When there are two or more 
objectives, they typically conflict, in the sense that some strategy is optimal (performs best) 
with respect to one objective, while a different strategy is optimal with respect to another. 
Analysis of such decision problems is discussed in the section “Multiple-Objective Decision 
Analysis.”  

Decision Rules and Risk Attitude 
Even with a single objective such as maximizing profit, M, the decision maker should state his 
or her preferences with respect to risk, or risk attitude, whenever uncertainty is involved. Figure 
1 shows two hypothetical profit distributions, Pr{M}, for two different strategies, A and B. 
Even though the expected profit resulting from strategy A is larger than that from strategy B, 
many decision makers would prefer B to A because of the higher uncertainty and much higher 
probability of losses in A. 

FIGURE 1: PROFIT DISTRIBUTIONS FOR STRATEGIES A AND B 

 

 

 

 

 

 

 

One needs to choose among strategies based on their corresponding risk profiles, as illustrated 
in Figure 1 above. To make such a choice rationally, there is need for an agreed upon decision 
rule—a rule that specifies how different strategies should be evaluated in achieving the stated 
objective. Some commonly used single-objective decision rules include: 

■ Maximizing expected value: the most commonly-used decision rule when faced with a 
single objective. If profit alone is the objective, this is known as the EMV (Expected 
Monetary Value) decision rule. Taking into account only the mean of the objective’s 
distribution, it simply ignores any risk in selecting a strategy, and as such is a poor decision 
rule.  
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Strategy B 
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■ Maximize expected value and minimize variance: this decision rule measures the risk 
through the variance of a single objective’s distribution, and is commonly used in selecting 
among security portfolios and many other investment decisions. This rule does not prescribe 
an optimal strategy but lets the decision maker select his or her optimal mix from an 
efficient frontier5. 

■ Maximize expected utility: the most coherent way to incorporate a decision maker’s attitude 
towards risk This decision rule requires the prior assessment of the decision maker’s utility 
function for the relevant consequence, e.g. profit. The optimal strategy is then chosen as the 
one that maximizes the expected utility6. Refer to the section on “Utility Theory” for further 
discussion. 

Main Tools of Decision Analysis  
Important methodologies and tools in decision analysis include: 

■ Graphical models, which are very important in modeling the decision problem and 
evaluating results. Two such graphical tools—influence diagrams and decision trees—are 
discussed in the section “Graphical Decision Models.” 

■ Bayesian inference or learning, which is the fundamental learning mechanism in decision 
models. It is essential in decision situations that involve two or more decisions, made at 
different points in time, which are closely related in affecting chance events, each other, 
consequences, and objectives. Refer to the section on “Analysis of Sequential Decisions” 
for a discussion of these notions.  

■ The expected value of (perfect or partial) information, which measures the value of 
information about sources of uncertainty in the problem in terms of the decision maker’s 
objectives;  

■ Constrained optimization, which allows the inclusion of constraints on objective and/or 
decision domains. 

■ Quantitative risk analysis tools, which allow one to quantify and assess a decision 
problem’s total uncertainty. These tools include: 

■ Assessment of the probability distributions of the uncertain model inputs7, using 
probabilistic modeling and statistical estimation, and/or expert elicitation techniques.  

■ Uncertainty analysis, which simulates the distribution of the objective, Pr{M}, by 
means of sampling from the distribution of uncertain model inputs, and re-evaluating 
the objective value M for each sample. 

■ Sensitivity analysis, which, through an iterative process facilitates the building of a 
requisite decision model8 and allows testing of its robustness. Analysis tools for 
apportioning the variation in model outcome to its sources include correlation 
coefficients, rank correlation, and regression analysis 

                                                 
5 The concept of efficient frontiers is discussed in the section “Multiple-Objective Decision Analysis”. 
6 Utility theory is discussed in the section “Utility Theory”. 
7 Uncertainty in a model can stem from natural process variability and/or subjective uncertainty. 
8 A requisite decision model is a model that contains only and all which is essential in optimally solving the decision 
problem. 
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Applications 
Decision analysis has been widely used for medical diagnosis and treatment, bidding, 
negotiations, and litigation. A non-exhaustive list of other applications in business and 
government includes:  

Business: 

■ Airline and hotel yield management 

■ Oil exploration 

■ Quality assurance and control 

■ Crop protection 

■ Credit and loan portfolio management 

■ New product development 

■ New venture launching 

Government: 

■ Emergency management 

■ Environmental risk management 

■ Choice of new energy sources  

■ Research and development programs 
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Discrete Choice Modeling 
Discrete choice modeling may be thought of as a generalized case of logistic regression 
modeling that evolved from conjoint analysis. In logistic regression, the dependent variable is 
categorical and takes on one of two outcomes. For example, a credit card account holder may 
default or not default. Discrete choice modeling extends this modeling structure to the case 
where the dependent variable takes on two or more discrete values, which are unordered. An 
example of an unordered dependent variable would be a consumer’s choice of a credit card, an 
installment loan, or a line of credit to finance the purchase of a durable good. This dependent 
variable is unordered because there is no underlying ranking to the discrete choices. 

The goal of discrete choice analysis is typically to determine the key characteristics that explain 
why a consumer makes a specific choice from a set of available products. By understanding the 
key tradeoffs, marketing decisions can be made to maximize sales, profitability, or market 
penetration. 

To model these preferences we rely on the concept of utility theory. A utility function (which 
we may write mathematically as U(Product)) maps a consumer’s preferences to some numeric 
value such that if the consumer prefers product A to product B, U(A) is greater than U(B). We 
can also define a utility function not as a function of the product in its entirety, but more 
usefully as a function of the underlying product features and consumer demographics. We can 
also include variables describing the consumer in the model. For example, a utility function for 
a financial product may look like the following:  

carnewbuysconsumervolvingdcreditlinecAPRbvolvinga
productfinancialU

___*Re***Re*
)(

+++
=

 

where “revolving” and “consumer_buys_new_car” are dummy variables, taking a value of 1 for 
yes or 0 for no. The terms a, b, c, and d are weighting terms to be estimated. In this example, we 
would expect a to be positive (since revolving products are more flexible that non-revolving 
products), b to be negative (since APR is the “price” of the financial product), c to be positive( 
since people prefer more credit to less), and d to be negative ( since a consumer needing to 
finance a new car is not likely to finance it with a revolving product). We model the consumer’s 
choice by calculating the consumer’s utility for each product and selecting the product with the 
highest utility. 

Great care must be taken when structuring the utility function to be estimated. For 
example, the simplest structure might be as follows: 
 

 

 

 

 

In the above case, the consumer considers all product features at once before deciding on a 
choice. However, if the typical consumer makes decisions in a staged manner, first considering 
certain features and rejecting products that don’t contain those required features, and then 
applying the remaining product features to further narrow the n choices, a model developed 
using the structure in Figure 1 will typically not validate well. 
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An alternative decision structure might look as follows: 

 

 

 

 

 

 

 

 

The preceding model is known as a nested model, because the final choice of product is 
“nested” within the prior choice of a revolving or non-revolving product. 

Data used to develop the discrete choice model should contain the relevant attributes of the 
choice alternatives, e.g. the product features and customer demographics, and the choice itself. 
Depending on the uses of the model, it may also be desirable to include attributes of the 
decision made. In applications such as travel demand forecasting, discrete choice models have 
been developed and proved useful with unplanned data. However, in marketing research, where 
data planning (typically through experimental design) is critical to obtaining good estimates of 
the effects, these data are collected from a sample of consumers participating in a test. The test 
participants are asked to choose their favorite alternative. The resulting data are very effective 
in determining important parameters, such as brand-price interactions and how they differ for 
different consumers. 

Applications 
Discrete choice modeling is mostly used for the modeling of consumer choices of products, but 
can be extended to any type of unordered outcome. Examples include modeling which debt 
obligation a risky customer defaults on and which set of product features to offer a consumer. 
At Fair Isaac, it is being used in a simulator to explore price elasticity and make informed 
strategic marketing decisions.  

Strengths 
� Can have mixed continuous and categorical predictor variables. 
� Results are already on probability scale. 
� Can handle the case of a consumer making decisions multiple times. 
� Good to use where the consumer cannot be asked directly which attributes he considers 

most important. 

Weaknesses 
� Model validation is sensitive to segmentation and decision structure 
� For categorical predictor variables that are converted to dummy variables, there is currently 

no effective mechanism for engineering the model. 

Select Product 

Revolving Non Revolving 

Credit Card Line of Credit Installment Loan
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Discriminant Analysis 

The goal in discriminant analysis is usually two-fold: 

� Segment or separate individuals into two or more previously defined groups 

� Classify a new individual into one of the groups 

A rule or “discriminant function” is developed based on measurements (variables) associated 
with each of a sample of individuals from two or more populations. As in regression, the 
general approach is to construct, in some optimal way, a linear combination of measurements or 
predictor variables which will best distinguish (discriminate) between the groups. The model is 
in the form of multiple formulæ, each corresponding to one group9. A new individual can then 
be assigned or classified into the correct population based on the highest value of the linear 
combinations (scores) from among the discriminant functions for that particular individual. 

The predictor variables can be predetermined by the analyst or can be selected using stepwise 
discriminant analysis. Stepwise discriminant analysis operates in principle like stepwise 
regression; variables are included in the model sequentially until no further improvement 
(within the stop criterion limits) in discrimination is gained. 

Applications 
Often used in marketing (e.g., to distinguish purchasers of a new product from non-purchasers, 
to identify low/medium/high response groups). Also used for developing credit risk models. 

Strengths 
■ Can separate and classify individuals into multiple groups. 

■ The idea of scoring an individual and use of a cutoff is inherent in this methodology. Hence 
it can be easily perceived as the “right tool” for credit scoring. 

■ Can model multiple outcomes. 

Weaknesses 
■ Assumes that the predictor variables are distributed as multivariate normal (having a 

combined distribution that is normal in multiple dimensions—this results in some elegant 
simplifications on which discriminant analysis relies). This assumption is usually violated 
in our typical scoring applications. Although the technique is somewhat robust with respect 
to minor violations of the assumption, serious violations will often result in unreliable 
estimates. 

■ If stepwise discriminant analysis is used, the problems associated with variable selection 
procedures are present. The “best” subset selected for a given data set may perform poorly 
in future samples. 

■ When some or all of the independent variables are very highly correlated (i.e., a situation 
often termed multicollinearity), the procedure could select an unreasonable set of variables 
as optimal. In fact, in situations of multicollinearity, estimates of regression coefficients 
from sample to sample fluctuate markedly. 

                                                 
9 For binary prediction, the formulæ degenerate to a single formula since probability of membership in one of two 
mutually exclusive groups also reveals the probability of membership in the other group. 
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Experimental Design  
Experimental Design is a mature and extremely successful science dating back to the pioneering 
work of R. A. Fisher in the 1930s. It hosts a body of techniques for generating efficient 
experiments or tests such that the resulting data will yield precise analysis results with low 
systematic or personal bias. Typical goals of such an analysis include:  

■ Understanding the causes of variation in the measured outcome of a complex system or 
process 

■ Prediction of how the outcome would change if certain control factors or operating 
conditions were changed 

■ Optimization of control factor settings to achieve or approach a desired outcome 

Experimental design takes into account the scope of analysis that is envisioned for the 
experimental data. To design the experiment, the researcher requires a general idea of the 
predictive model structure and plausible ranges for the control factors where predictions and 
optimization are to be attempted. Then data are collected in the most efficient manner to provide 
sufficient coverage throughout the operating region of interest, such that the model will yield 
accurate predictions and optimization results. Prior experience and theoretical insight into a 
problem help with the task to design the best experiment.  

In the experimental design paradigm, predictions of the dependent variable are attained from 
regression models. In many financial or marketing applications, observational data have been 
acquired as a result of running the business “as usual”, without giving consideration to the scope 
of a desired analysis. In these cases, regression techniques are applied to fit the observational 
data, and to predict new outcomes under similar operating conditions. This analysis of 
unplanned data is limited when compared to experimental design, because extrapolation for 
novel control factor settings or operating conditions is notoriously unreliable.  

The concept of experimentation can be illustrated with a simple example. Consider data samples 
with x-values (control factor settings) within the range [–0.8, 0.8], and associated noisy y-values 

(outcomes). If only the expected outcome ŷ  matters, any arrangement of control factor settings 
is equally good. The unplanned data on the left hand side of Figure 1 provides the estimate of 
average outcome displayed on the right hand side. However, if the researcher is interested in 
analyzing the relationship between the factor value and the expected outcome, she should give 
some consideration to what would constitute an adequate regression model to solve her 
problem, and select the experimental design accordingly.  

 
 
 
 
 
 1 -1 

FIGURE 1.  UNPLANNED DATA 
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The researcher may have theoretical insights and/or practical experience with a similar 
problem, pointing to the fact that a linear relationship will model the relationship well 
enough for all practical purposes. If the goal is to fit a linear relationship ( xbay *ˆ +=  ), 
then a better experimental design is the one illustrated in Figure 2. It places the test points 
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at the extremes of the allowed range, thereby achieving the most accurate determination 
of the slope parameter b (note however that the design given by Figure 2 will not allow 
for a check of the possible lack of fit against a nonlinear relationship.  
If the goal is to develop a model with a quadratic ( 2**ˆ xcxbay ++=  ) or cubic 

relationship ( 32 ***ˆ xdxcxbay +++= ), then the experimental designs in Figures 3 
and 4 respectively can be used. 
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Figure 2: Experimental data for fitting straight line 
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Figure 3: Experimental data for fitting quadratic  

Figure 4: Experimental data for fitting cubic relationship 
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Trying to fit a linear, quadratic or cubic fit to the unplanned data in Figure 1 will result in high 
variance of the regression parameters and potentially poor extrapolation, i.e. predictions with a 
very low degree of confidence in the region not covered by the observed data (e.g. at x = 1). The 
only way to boost confidence in a model and its predictions is to run experiments in the region 
of interest, while taking into account the envisioned model structure. 

Even with large amounts of unplanned data, estimated effects can be confounded. Consider a 
simple authorization strategy assigning credit limits proportional to applicants’ incomes. One 
wishes to model the profit of an account as a function of the control factor “credit limit” and 
income (which is not a control factor here), such that the optimal factor setting can be 
determined for a given applicant. However, without further information, regression analysis of 
the unplanned data generated under the business-as-usual strategy cannot attribute the variation 
of profit to the individual variations of income or credit limit, because the two are varied in 
unison. It is therefore also not possible to solve for the optimal authorization strategy. A simple 
and effective (but not necessarily optimal) tactic of experimental design, randomization, will 
solve this business problem, by assigning a randomly selected fraction of applicants to 
randomly distributed credit limits within a plausible neighborhood of the “business-as-usual” 
authorization limit.  
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Experimental design is the answer to these problems of extrapolation and confounding by 
allowing for efficient, systematic acquisition of data samples. The design of the experiments 
varies in complexity depending on the number of experimental factors, their suspected degree of 
non-linearity and order of interactions, and constraints on factor ranges and their permissible 
combinations. When designed appropriately, the number of experiments required to accurately 
estimate the desired effects will be minimized. The simplest (and most easy to interpret) 
approach is to run experiments where only one factor is varied at a time. However, this 
approach is inefficient if many factors need to be estimated. In these cases, fractional and full 
factorial designs are used (see references in this section). A large number of design approaches 
have been developed over time for different applications, including: 

■ Screening designs for main effects to identify factors with greatest impact on the 
outcome 

■ Response surface designs for quadratic effects to optimize an outcome, often using a 
sequence of experiments  

■ Optimal designs for nonstandard model structures and irregularly shaped operating 
regions 

A comprehensive description is outside the scope of this discussion.  

Applications 
Applications of experimental design from testing of research hypotheses in the natural sciences 
to industrial process optimization for the agricultural, healthcare, chemical and electronics 
industries. Experimental design is widely used in research, usually to show the statistical 
significance of an effect that a particular factor exerts on the dependent variable of interest. In 
industrial settings, the primary goal is usually to extract the maximum amount of unbiased 
information regarding the factors affecting a production process from as few (costly) 
observations as possible. In marketing applications, the goal is usually to test as many 
marketing strategies as possible, within budgetary constraints on the number of experiments, 
and constraints on the factor combinations that define a product.  
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Expert Systems  
Expert systems, often called knowledge-based systems or rule-based systems, are computer 
software applications that capture the knowledge of a human expert and make decisions based 
on this “knowledge base.” The knowledge base is represented by a set of IF-THEN rules. This 
set of rules is determined in one of two ways. The traditional approach is to have a “knowledge 
engineer” work through an interview process during which the engineer extracts the knowledge 
from the expert. Alternatively, if a database of cases along with the expert’s decision is 
available, the knowledge engineer can induce a set of rules from this database using a rule-
induction technique such as trees. Regardless of the technique, the result is a knowledge base of 
IF-THEN rules that are programmed into software. Once the software is programmed, the 
expert system uses its “inference engine” to access the knowledge base, sort through the set of 
rules, and make decisions on new cases, allowing the human expert to focus his or her attention 
on the more difficult decisions. 

In this form, expert systems differ starkly from all the other techniques discussed in this 
document in that they organize subjective, human experience, not the empirical evidence 
associated with the actual outcome which might be analyzed using statistical methodologies. 

Case-based reasoning 
Case-based reasoning is an alternative, yet related, approach to expert systems. In case-based 
reasoning systems, the knowledge base is not stored as a set of IF-THEN rules but as a set of 
historical cases. Case-based reasoning software allows the user to efficiently search this 
database for those cases most like the one being processed. For example, if the decision is 
whether to accept or reject a loan application, the case-based reasoning system would contain a 
database of past loan applications. After a new application is entered, the database would be 
searched for the closest matches. The matches would be tagged with the past accept/reject 
decision, the past actual outcome on booked accounts, or both. Based on the outcome and 
management parameters set for approval, a decision would be made or the application would be 
referred to a human reviewer. 

Applications 
Successful applications of expert systems and case-based reasoning can be found in the areas of 
personnel policies, maintenance rules, financial planning, and medical diagnosis.  

In the risk management world, expert systems have been applied in areas where data were not 
readily available, namely mortgage application and small business loan processing. 

Strengths 
■ It is very appealing to clone the corporate experts. Many contract signers would regard 

themselves as experts. 

■ Expert systems do not require data. 

■ They are better than nothing in terms of supplying management control and a way of 
exerting some consistency in the decision making process. 
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Weaknesses 
■ The knowledge extraction process is very difficult and time consuming. 

■ Poorly engineered solutions can be a nightmare, or impossible, to maintain. Changes in the 
thinking of the expertise can affect the whole structure of the decision system. 

■ When adequate data is available for formal analysis they are inferior global alternatives to 
data-driven solutions. (Fair Isaac’s experience with human overrides applied to score 
rankings suggest that judgment is generally inferior over groups of cases.) 
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Factor and Principal Component Analyses  

Data with a large number of variables often exhibit a high degree of linear relationships 
(covariance or correlation) among the observed variables. It is often useful to try to use these 
relationships to help reduce the dimensionality (number of variables) of the data by squeezing 
out the redundant information (due to the related nature of the variables) represented by the 
many variables. The reduced dimensionality may facilitate expedient exploratory data 
investigation and modeling.  

Principal component analysis and factor analysis are two related data analysis techniques that 
help reduce the dimensionality of the data by utilizing the linear relationship between variables. 
Factor analysis may provide further insight into potential grouping schemes for the observable 
variables. While the two techniques are not modeling techniques per se, the results of principal 
component analysis and factor analysis can be used as part of other modeling techniques. Both 
techniques, given their utilization of correlation or covariance between variables, are only 
applicable to continuous-valued variables10. Also, as the total amount of correlation between the 
variables in the data decreases, these techniques become less useful. 

Principal component analysis 
The goal of principal component analysis is to reduce the dimensionality of data by generating a 
sequence of linear combinations, called principal components, of the original observable 
variables. In other words, it tries to derive a smaller set of principal components that represent a 
larger set of observable variables in the data without loss of significant specificity. No explicit 
“meaning” need be associated with the principal components themselves. (See Factor Analysis 
below for further discussion on “meaning.”) 

The result of principal component analysis is a sequence of uncorrelated principal components 
that are ranked in terms of the amount of total variation (correlation/covariance) they explain. 
For highly correlated data, a few principal components may represent most of the variation. For 
data not highly correlated, many principal components may be needed to explain a majority of 
the variation. Depending on the ultimate goal of the dimension reduction and just how few of 
the principal components actually explain the majority of the variation in the data, the analyst 
must choose between simplicity (using fewer principal components) and comprehensiveness 
(explaining more of the variation). 

Graphical examination of the observable variables against the dominant principal components 
often reveals the original correlation between the observable variables  
more clearly. 

Factor analysis 
Factor analysis is related to principal component analysis in that its goal is also to search for a 
few representative variables to explain the observable variables in the data. However, the 
philosophical difference in factor analysis is that it assumes that the correlation exhibited among 
the observable variables is really the external reflection of the true correlation of the observable 
variables to a few underlying but not directly observable variables. These “latent” variables are 

                                                 
10 Two other techniques may help with dimension reduction for categorical data: correspondence analysis, a 
technique that tries to do dimension reduction of multivariate categorical data by working with the contribution to 
Chi-squared statistic from each cell of multivariate crosstabulations in a similar conceptual fashion as principal 
component analysis works with the correlation or covariance matrix; log-linear modeling (see section in this 
document), which is useful for detecting structure of relationship among categorical variables. 
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called “factors” that drive the observable variables. When conditioned on the factors, there is no 
correlation between the observable variables.  

For example, the concepts of “ability to pay” and “willingness to pay,” although difficult to 
observe directly, are two very general factors that may drive most of the credit risk variables we 
typically encounter. More specific and practical examples of factors in credit data are 
“revolving credit capacity,” “revolving credit utilization,” and “revolving credit experience.” 

Factor analysis is the process by which various alternative choices are made towards generating 
the factors and selection of the factor scheme that most intuitively relates the original 
observable variables is made. In addition to choosing the trade-off between number of factors 
and amount of correlation/covariance to explain, there are additional choices of whether to 
allow the factors to be correlated (oblique) or uncorrelated (orthogonal). 

Applications 
As mentioned above, principal components and latent factors are often used as a dimensionality 
reduction technique to reduce the overall number of variables down to a fewer, manageable 
number of variables on which further modeling can be performed. Factor analysis is used in 
behavioral and social sciences as well as in the field of market research where it is appealing to 
collapse answers to many related survey questions into a few underlying factors. 

Strengths 
■ Can summarize many dispersed continuous variables into a few summary variables. 

■ Pattern of correlation of the principal components and factors with the observable variables 
may reveal “structure” in the data and provide insight. 

■ Speculating about the nature of the factors may provide more insight into the original 
observable variables. 

Weaknesses 
■ When a few principal components or factors are insufficient (as seems to be the case in 

credit data), the original difficulty of the high-dimensionality of the data returns. 

■ Inability to handle missing values or mixed variables (where some of the cases are special, 
non-interval scale values) reduces applicability on credit data. 

■ Do not address, or have to address via pre-processing, categorical or ordinal observable 
variables. 

■ Interpretation of factors and their relationship to the observable variables is rather 
subjective and arbitrary. 

■ Not applicable if the relationships between the observable variables are not linear (i.e., 
strong relationship but not identified as so by correlation or covariance measures). 
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Genetic Algorithms  

Genetic algorithms (GAs) are a class of optimization algorithms inspired by population genetics 
and the Darwinian principle of natural selection, commonly referred to as “the survival of the 
fittest.” Given an objective function, the typical GA begins with a random population 
(generation) of solutions (chromosomes). Each solution is represented by a sequence of 
characters (genes) each having certain values (alleles). By mating and mutating the best 
solutions (as measured by some fitness value), the GA produces a new population of improved 
solutions (offspring). The average fitness of the population, as well as the fitness of the best 
solutions, improves at each generation. This process continues until the GA has determined an 
acceptable solution to the problem (as determined by the developer). 

This process can best be illustrated with an example. Suppose we want to identify subsets of an 
applicant population that are most likely to be classified as good accounts in the future. We are 
given a data set that contains the historical performance of a number of applicants and the 
following predictive variables: 

1. Applicant Age (1 = old and 0 = young) 
2. Residential Status (1 = owns and 0 = does not own) 
3. Checking Account Reference (1 = yes and 0 = no) 
4. Credit Card Reference (1 = yes and 0 = no) 
5. Derogatory Ratings on Credit Bureau Report (1 = yes and 0 = no) 

Given this information, we can represent any subset of the population by a sequence of 0’s and 
1’s. For example, the sequence 01110 represents individuals that are young, own their 
residence, have a checking account and a credit card, and do not have any derogatory ratings on 
their credit bureau report. For each subset of the population, we can define a fitness measure by 
counting the number of good and bad applicants in the subset and calculating the good:bad odds 
for the subset. The fittest subsets are those that have the highest good:bad odds. 

Now that we have defined the form of the solutions (sequences of 0’s and 1’s) and a measure of 
how well each solution performs (the good:bad odds), we can generate a random set of solutions 
and let the GA run. Suppose we generate the following four random solutions (ranked by their 
corresponding odds): 

01110 30:1 (young, owns, checking account, credit card, no derogs) 
10101 2:1 (old, does not own, checking account, no credit card, derogs) 
11011 2:1 (old, owns, no checking, credit card, derogs) 
00010 1:1 (young, does not own, no checking, credit card, no derogs). 

Using the principle of the survival of fittest, the GA selects the fittest solutions in order to 
produce a new generation of solutions. The GA uses two operations to generate new solutions. 
The first, crossover, is simply a swapping of values at certain positions of the sequences 
representing a pair of solutions. For example, the GA might generate two new solutions by 
swapping the first two positions of the fittest solutions above: 

01|110  10|110 
10|101  01|101. 
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The second operation is called mutation and is simply a random change in the value at some 
position in the sequence. For example, the GA might mutate the value at the third position of 
the fourth solution above by changing the 0 to 1: 

00|0|10  00|1|10. 

Through crossover and mutation, the GA generates a new set of solutions. Crossover allows the 
GA to preserve features of the best solutions of past generations while trying slightly different 
solutions. Mutation lets the GA produce novel solutions that it might not find using crossover 
alone. Through continuous use of crossover and mutation, the population of solutions will 
evolve, each generation more fit than the previous. For example, the initial population after 
several generations might evolve into the following: 

11110 40:1 
01110 30:1 
10110 30:1 
00110 20:1 

At this particular generation, the GA has determined that based on historical data, applicants 
who are old, own their residence, have a checking account and a credit card, and do not have 
any derogatory ratings on their credit bureau report are most likely to perform well in the future. 

Although the number of possible configurations of applicants in this example is finite and small 
(with only 32 possible combinations), like all optimization algorithms, GA is most useful in the 
search for an optimal configuration when the number of possible configurations is large and the 
cost of calculating the fitness of all possible solutions is prohibitive. 

Applications 
Flexible encoding allows genetic algorithms to be applied to a diverse set of problems in 
biology, computer science, engineering and operations research, image processing and pattern 
recognition, and the social sciences. Their highly parallel search mechanism makes them 
suitable for high-dimensional, highly non-linear, non-smooth objective functions that other 
optimization techniques find difficult to solve. In general, however, genetic algorithms will 
generally take longer to converge than other techniques, and as with other optimization 
techniques, are not guaranteed to find the globally optimum solution. 

Strengths 
■ General-purpose technique that is applicable to a variety of problems. 

■ Generally finds a good solution. 

Weaknesses 
■ Not guaranteed to find the best solution. 

■ Computationally intensive. 
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Graphical Decision Models  
Graphical paradigms play an important role in modeling and structuring decision problems11. 
The two most commonly used graphs to display decision models are influence diagrams and 
decision trees. The following types of nodes are used in both types of graphs: 

■ Decision nodes, drawn as rectangles, represent decisions. 

■ Chance nodes, drawn as ovals, represent uncertain events. 

■ Consequence or value nodes, drawn as rounded rectangles or diamonds12, represent 
consequences. 

Influence Diagrams 
An influence diagram is a directed acyclic graph in which each node labels a single variable of 
the decision problem and the arcs represent two main types of relationships among the 
variables. Arcs into decision nodes signify that all variables labeled by the nodes from which 
the arcs emanate (called direct predecessor or parent nodes) are observed by the decision maker 
before the decision is made. These are sometimes called information arcs. Arcs into chance or 
consequence nodes represent possible probabilistic dependence on their direct predecessor and 
are usually referred to as dependence arcs. 

Figure 1 shows an influence diagram that illustrates these notions and the modeling power of 
influence diagrams. It is a simplified model for a two-stage credit card campaign decision 
problem. Before making the Offer decision, the only information available to the decision 
maker consists of the Credit Bureau Risk Score and the Revenue Score of the candidate, a fact 
captured by the two (information) arcs into the Offer node. Alternatives at the Offer node may 
be some combination of balance transfer amount and APR. At the Credit Limit decision, the 
decision maker has observed, in addition to the two scores, whether the customer responded to 
the offer, and, if so, the Income on his credit application. The arc from Offer to Credit Limit 
conveys that the decision maker remembers and is aware of the alternative chosen (which offer 
has been made) at the previous decision.13 

                                                 
11 Decision problem formulation is discussed in the section titled “Decision Analysis: Key Concepts and Tools”. 
12 There is less convention for value node representation, and sometimes they are represented by triangles or octagons. 
13 Such an information arc, between two decision nodes, is called a no-forgetting arc. 
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FIGURE 1: AN INFLUENCE DIAGRAM FOR A TWO-STAGE CREDIT CARD CAMPAIGN DECISION PROBLEM 

The rest of the arcs in the influence diagram are dependence arcs. A strong statement in an 
influence diagram is made by the lack of such arcs, which implies conditional independence. 
For example, two conditional independence statements made by the model in Figure 1 are: 

■ Given the Revenue and Loss, the Profit is conditionally independent of everything else; 

■ Given the Credit Bureau Risk Score, the (positive) Response, and the Income, the 
Performance (“Good” or “Bad”) of the customer is conditionally independent of the 
Revenue Score, and both decisions; 

Conditional independence statements drastically simplify model complexity, which in most 
cases is not only highly desirable, but essential to a tractable solution that also allows some 
insight.  

Applications 
Influence diagrams are a powerful tool in modeling decision problems, because they allow for 
the specification and visualization of the structure of fairly complex problems in a compact 
graph that conveys explicitly the assumed dependence, or independence, among variables, the 
sequence of decisions, and the flow of information to the decision maker. They are most 
effective in the early stages of modeling an unstructured problem, when data and other details 
are unavailable, as a communication tool between a decision analyst and a decision maker. In 
conjunction with sensitivity analysis, they allow the determination of what matters in a problem 
and what does not, and thus the construction of tractable models that allow insight into the 
problem and its solution. 
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Influence diagrams with only chance nodes, also called Bayesian Networks, allow, through 
formal mathematical interpretation of the structure of their graphs and transformation 
algorithms, powerful probabilistic inference in much larger models. Some algorithms are 
designed to discover the conditional independence and other structural details of an underlying 
model from large datasets of empirical data on the component variable. These algorithms – 
some of which are used at Fair Isaac – enable the simplification of models of large problems 
that would otherwise be intractable.  

Strengths 
■ Allow for the visualization of complex problems in a compact way, particularly the 

dependence structure among variables. 

■ Effectively communicate the relationships between variables and the sequence of decisions. 

■ Serve as a formal framework for Bayesian inference and learning. 

Weaknesses 
■ Detail behind each node in the graph is not readily apparent. 

■ Typically unable to capture the asymmetric structure of a decision problem14.  

Decision Trees 
In contrast to influence diagrams, decision trees explicitly show any asymmetry in the structure 
of a decision problem. They also show the functional and numerical details for each node on the 
corresponding branches. Each branch emanating from a decision node corresponds to an 
alternative and each branch emanating from a chance node corresponds to a possible outcome.  

Figure 2 shows a very small portion of a decision tree for the credit initiation problem described 
above. It explicitly shows the following asymmetries: 

■ When there is no Response, the immediate realization of Profit15 is the end of this scenario; 
other events, like Income and Performance, are never realized, and the Credit Limit 
decision never gets to be made;  

■ When the customer applies but the decision maker decides to not grant credit, the 
immediate realization of Profit16 is similarly the end of this scenario.  

                                                 
14 Asymmetry in a decision problem refers to the very common situation where different scenarios do not have the 
same realization of variables or the same order of variables realized. In the example above, for instance, if the 
customer does not respond to the Offer, then the Credit Limit decision is never made and other events, like Income 
and Performance are never realized. Fair Isaac’s proprietary decision analytic software has generalized its influence 
diagram paradigm to arcs, additional nodes, or notation to capture asymmetry. 
15 The fixed cost of sending the offer, say, which is implicitly modeled. 
16 An implicitly-modeled fixed cost that also would include in this case the evaluation of the application. 
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FIGURE 2: A SECTION OF THE DECISION TREE DEPICTION OF THE CREDIT CAMPAIGN MANAGEMENT 
DECISION PROBLEM 

Applications  
Decision trees preceded influence diagrams by many years and are still indispensable when a 
highly asymmetric decision problem needs to be structured and modeled graphically. They are 
useful when used in conjunction with influence diagrams. 

Strengths 
■ Details associated with each node are readily apparent in the graph ; 

■ Asymmetric structure is readily displayed. 

Weaknesses 
■ Decision trees become unwieldy for decision problems with even a moderate number of 

variables or a few stages; 

■ Conditional dependence and independence among variables are not readily apparent in the 
graph. 
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INFORM 

INFORM is Fair Isaac’s proprietary predictive modeling technology. It is unique in its ability to 
account for business rules, legal environments, and real-world biased or missing values. The 
name, INFORM, was coined to reflect its information theory root. 

Although the modeling component is proprietary and closely protected in specific detail, the present 
version (INFORM11) is based upon a linear goal programming approach. As such, it allows for such 
operations research capabilities as linear constrained optimization. Many of the constraints have not 
been (and in some cases cannot be) implemented in other modeling techniques.  

The latest generation of INFORM—INFORM-NLP—utilizes a non-linear constrained 
optimization algorithm. It provides the foundation for an extensible modeling technology that 
can accommodate “designer” objective functions to predict categorical as well as continuous 
outcomes utilizing either arbitrary numerical or categorical predictors (features).  

Applications 
INFORM has been successfully applied to the fields of predictive modeling served by Fair 
Isaac. Examples of applications include web log transaction fraud detection, credit customer 
retention, insurance dollar loss reduction, direct mailing response maximization and mortgage 
risk assessment. 

Strengths 
■ No data structural assumptions other than that certain conditional score distributions are 

approximately normal. 

■ Allows for constraints to be applied to score coefficient relationships (also called score 
weights restrictions) which provide for model stability and palatability. 

■ Allows for the optimization of a secondary objective subject to a minimal loss in the 
primary objective. 

■ Provides some properties of ridge regression via a weights penalty parameter. 

■ Problem variables can be de-emphasized by range restriction for a given set of variables 
while trading off overall model strength. 

■ Handles missing values (i.e., no information) without having to drop the observation. 
Missing values are forced to take on the neutral predictive score weight. 

■ Handles mixed variables (i.e. those with a combination of continuous and categorical 
attribute values). 

■ Allows for continuous as well as binary outcome modeling. 

■ Has a performance inference capability. 

■ Provides automated step-wise variable selection. 

■ Score being linear in log(odds) allows for multiple models to be aligned across segments of 
the population such that a score from any one of several models has the same interpretation. 

■ Allows calculation of marginal weights for variables not in the score17 providing insight into 
sources of potential model weakness. 

                                                 
17 While some of the stepwise regression techniques also have a capacity to determine if additional variables could 
enter the model, most do this by recalculating the full model with the new variable in the model and do not reflect the 
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Weaknesses 
■ The current production versions of INFORM work with categorical predictors (continuous 

predictors must be classed into discrete intervals prior to modeling). Future versions of 
INFORM-NLP will allow arbitrary numerical predictors or features. 

■ To capture interactions between raw input variables, features capturing these interactions 
must be constructed, and then included in the model as additive terms. Fair Isaac has other 
technologies (e.g., ADVISE) to automatically help construct such features. 

■ Unlike classical statistical methods, confidence intervals for the score coefficients cannot be 
computed with simple formulas. Bootstrap sample methods must be used to compute 
confidence intervals.  

                                                                                                                                               
purely marginal nature of the new variable. Also, none are known to allow a score weight restriction capability for 
the marginal variables. 
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Linear and Non-linear Programming  
Linear programming (LP) and non-linear programming (NLP) are two widely utilized 
techniques to minimize (or maximize) an objective function subject to constraints. Both LPs and 
NLPs are subclasses of the field called mathematical programming, which originated in the 
1940s, when the term ‘programming’ was still synonymous with scheduling or planning. 
Mathematical programming solutions are utilized when there is no closed, algebraic solution for 
determining the optimum value of the objective function, or when the derivation of an algebraic 
solution requires more time and effort than a mathematical programming technique. 

In its most general form, the goal of mathematical programming is to 

Minimize f(x)  

Subject to: gi(x) = 0, for i = 1, 2, …, p 

hj(x) ≥ 0, for j = p+1, p+2, …, q 

The parameters x are often called decision variables. Finding the minimum value of f is 
equivalent to finding the maximum value of –f, such that any maximization problem can be 
converted to a minimization problem.  

Specializations of this general formulation include: 

■ Linear programming: the special case when f(x), g(x), and h(x) are all linear functions 

■ Quadratic programming: f(x) is at most a quadratic function, and g(x), and h(x) are 
linear functions 

■ Integer programming: the special case when the x’s are required to be integer values.  

■ Unconstrained optimization: g(x) and h(x) are an empty set. 

When the objective function being optimized is well behaved, the outcome of the optimization 
is the identification of the optimal feasible solution, and the combination of decision variables, 
x*, that define the optimal solution. In predictive modeling, LPs and NLPs estimate the values 
of parameter coefficients, while in decision modeling, they are used to identify the optimal 
decision. 

Linear Programming 
The most widely used algorithm to solve a linear programming problem is the simplex method. 
Discovered in the 1940s, it derives its name from the geometry of the solution – the ‘simplex’ is 
the feasible region described by the linear constraints. At least one member of the solution lies 
at a vertex of the simplex.  

Take a simple LP example with two decision variables, x and y:  

Maximize:   Z =  $4x + $5y  
Subject to :    x + 3y <12  
   4x+3y < 24 
   x > 0, y > 0 
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An inequality constraint is converted to an equality constraint through the introduction of a 
slack variable, which measures the slack, or the distance between the constraint and the amount 
used. In our example, the problem is now written as: 

Maximize:   Z =  $4x + $5y +$0s1 + $0s2 
Subject to :    x + 3y + 1s1 + 0s2 = 12  
   4x + 3y + 0s1 + 1s2 = 24 

FIGURE 1: MAXIMIZE Z= $4X + $5Y 

 

In Figure 1, the simplex is represented by the shaded region of the graph. The simplex method 
generates a sequence of feasible solutions by moving from one vertex of the simplex to the next. 
The algorithm terminates when no adjoining vertices with lower objective function values can be 
found. In Figure 1, the optimal feasible solution is at the point (4, 8/3).  

In the worst case, the simplex method requires a number of iterations exponential in the number 
of unknowns. The search for more efficient algorithms has led to the use of interior-point 
algorithms, which visit points within the interior of the feasible region, and are polynomially, 
rather than exponentially, complex. 

Non-linear Programming 
A variety of approaches exist to solving a non-linear programming problem. The degree of 
difficulty is driven by the complexity of the objective function, which may be difficult or 
computationally costly to compute, and by the inequality constraints, which impose 
discontinuities on the solution. One of the greatest challenges for NLP algorithms is to avoid 
getting trapped in “local optima”, i.e. values that are optimal within a confined neighborhood, 
but sub-optimal globally. 
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As in linear programming, the inequality constraints can be converted to equality constraints by 
introducing slack variables (the slack variables are typically squared to enforce positive values):  

hj(x) + sj
2 = 0 j = p+1, p+2, …, q 

The Lagrangean relaxation method transforms a constrained problem into an unconstrained one, 
via the use of Lagrangean multipliers. The new objective function becomes: 

L(x, λ) = f(x) – λTc(x) 

where c is composed of the original p equality constraints and the q converted inequality 
constraints, x is now a (n + q)-dimensional vector of parameters (the original n parameters plus 
the q slack parameters), and λ is a (p + q) × 1 vector of Lagrange multipliers that act as 
additional parameters. 

Another way of addressing constraints is to recast the equality constraints as penalty functions: 

P(x, β) = f(x) + β∑
+

=

qp

i 1
(c(x))2 

In the penalty function formulation, the challenge is to judiciously choose a value for β so that 
the constraints are met without overwhelming the search for the optimal value of x. 

An NLP algorithm begins with an initial guess (or estimate) for the values of the decision 
variables. The algorithm proceeds by adjusting the estimate iteratively, using information about 
the objective function in the neighborhood of the current estimate. NLP algorithms differ in 
terms of the type of information they use for making the iterative adjustments. Some of the 
more widely used methods include: 

■ Gradient steepest descent: iterations occur in the direction of the gradient. This 
approach converges slowly and unreliably. 

■ Conjugate gradient: uses the difference between the gradient in the last iteration and the 
current gradient to infer the curvature of the objective function and derive a superior 
direction.  

■ Quasi-Newton: computes the gradient directly and approximates the Hessian, or second 
derivative, to provide an improved search direction. 

■ Genetic algorithms (refer to the section on this topic). 

■ Simulated annealing. 

Applications 
Linear programming and non-linear programming are utilized widely to solve prediction and 
decision problems in the areas of finance, operations management, economics and the physical 
sciences. NLP techniques are often hidden within commonly used multivariate statistical 
software programs (e.g., maximum likelihood estimation for log-linear models) and in decision 
optimization software. 

Fair Isaac makes wide use of linear and non-linear programming. A linear program is at the 
heart of INFORM11, Fair Isaac’s currently released predictive modeling technology. Non-linear 
programs are also found in Fair Isaac’s proprietary strategy optimization software, Strategy 
Optimizer, and new predictive modeling technology, INFORM-NLP. Non-linear programs are 
also utilized by Fair Isaac’s Data Spiders to identify optimal sets of predictive variables.  
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Strengths 
■ Many techniques are available, so if one does not work for a particular problem, another 

might. 

■ LPs and NLPs handle a wide variety of objective functions and constraints. 

■ Mathematical programming is a well-researched area, so that guidance is available in the 
literature to help determine appropriate techniques for particular problems. 

Weaknesses 
■ There is seldom a guarantee that a particular technique will converge to a solution for a 

particular problem, nor that the solution converged to will be a global minimum. 

■ For some problems, much of the work is in the correct specification of the objective 
function. 

■ Because these methods are iterative, they can be computationally intense and require long 
execution times. 
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Link Analysis 
Computer-based link analysis is a set of techniques for exploring associations among large 
numbers of objects of different types. These methods have proven crucial in assisting human 
investigators in comprehending complex webs of evidence and drawing conclusions that are not 
apparent from any single piece of information. These methods are equally useful for creating 
variables that can be combined with structured data sources to improve automated decision-
making processes. 

Typically, linkage data is modeled as a graph, with nodes representing entities of interest and 
links representing relationships or transactions. Links and nodes may have attributes specific to 
the domain. For example, link attributes might indicate the certainty or strength of a 
relationship, the dollar value of a transaction, or the probability of an infection. 

Some linkage data, such as telephone call detail records, may be simple but voluminous, with 
uniform node and link types and a great deal of regularity. Other data, such as law enforcement 
data, may be extremely rich and varied, though sparse, with elements possessing many 
attributes and confidence values that may change over time. 

Various techniques are appropriate for distinct problems. For example, heuristic, localized 
methods might be appropriate for matching known patterns to a network of financial 
transactions in a criminal investigation. Efficient global search strategies, on the other hand, 
might be best for finding centrality or severability in a telephone network. 

Link analysis can be broken down into two components—link generation, and utilization of the 
resulting linkage graph.  

Link Generation 
Link generation is the process of computing the links, link attributes, and node attributes. There 
are several different ways to define links. The different approaches yield very different linkage 
graphs. A key aspect in defining a link analysis is deciding which representation to use. 

Explicit Links 
A link may be created between the nodes corresponding to each pair of entities in a transaction. 
For example, with a call detail record, a link is created between the originating telephone 
number and the destination telephone number. This is referred to as an explicit link. 

Aggregate Links 
A single link may be created from multiple transactions. For example, a single link could 
represent all telephone calls between two parties, and a link attribute might be the number of 
calls represented. Thus, several explicit links may be collapsed into a single aggregate link. 

Inferred Relationships 
Links may also be created between pairs of nodes based on inferred strengths of relationships 
between them. These are sometimes referred to as soft links, association links, or co-occurrence 
links. Classes of algorithms for these computations include association rules, Bayesian belief 
networks, and context vectors. For example, a link may be created between any pair of nodes 
whose context vectors lie within a certain radius of one another. Typically, one attribute of such 
a link is the strength of the relationship it represents. 
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Time is a key feature that offers an opportunity to uncover linkages that might be missed by 
more typical data analysis approaches. For example, suppose a temporal analysis of wire 
transfer records indicates that a transfer from account A to person X at one bank is temporally 
proximate to a transfer from account B to person Y at another bank. This yields an inferred link 
between accounts A and B. If other aspects of the accounts or transactions are also suspicious, 
they may be flagged for additional scrutiny for possible money laundering activity. 

A specific instance of inferred relationships is identifying two nodes that may actually 
correspond to the same physical entity, such as a person or an account. Link analysis includes 
mechanisms for collapsing these to a single node. Typically, the analyst creates rules or selects 
parameters specifying in which instances to merge nodes in this fashion. 

Utilization 
Once a linkage graph, including the link and node attributes, has been defined, it can be 
browsed, searched, or used to create variables as inputs to a decision system. 

Visualization 
In visualizing linking graphs, each node is represented as an icon, and each link is represented 
as a line or an arrow between two nodes. The node and link attributes may be displayed next to 
the items or accessed via mouse actions. Different icon types represent different entity types. 
Similarly, link attributes determine the link representation (line strength, line color, arrowhead, 
etc). 

Standard graphs include spoke and wheel, peacock, group, hierarchy, and mesh. An analytic 
component of the visualization is the automatic positioning of the nodes on the screen, i.e., the 
projection of the graph onto a plane. Different algorithms position the nodes based on the 
strength of the links between nodes or to agglomerate the nodes into groups of the same kind. 
Once displayed, the user typically has the ability to move nodes, modify node and link 
attributes, zoom in, collapse, highlight, hide, or delete portions of the graph. 

Variable Creation 
Link analysis can append new fields to existing records or create entirely new data sets for 
subsequent modeling stages in a decision system. For example, a new variable for a customer 
might be the total number of email addresses and credit card numbers linked to that customer. 

Search 
Link analysis query mechanisms include retrieving nodes and links matching specified criteria, 
such as node and link attributes, as well as search by example to find more nodes that are 
similar to the specified example node). 

A more complex task is similarity search, also called clustering. Here, the objective is to find 
groups of similar nodes. These may actually be multiple instances of the same physical entity, 
such as a single individual using multiple accounts in a similar fashion. 
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Network Analysis  
Network analysis is the search for parts of the linkage graph that play particular roles. It is used 
to build more robust communication networks and to combat organized crime. This exploration 
revolves around questions such as: 

■ Which nodes are key or central to the network?  

■ Which links can be severed or strengthened to most effectively impede or enhance the 
operation of the network?  

■ Can the existence of undetected links or nodes be inferred from the known data?  

■ Are there similarities in the structure of subparts of the network that can indicate an 
underlying relationship (e.g., modus operandi)?  

■ What are the relevant sub-networks within a much larger network?  

■ What data model and level of aggregation best reveal certain types of links and sub-
networks? 

■ What types of structured groups of entities occur in the data set? 

Applications 
Link analysis is increasingly used in law enforcement investigations, detecting terrorist threats, 
fraud detection, detecting money laundering, telecommunications network analysis, classifying 
Web pages, analyzing transportation routes, pharmaceuticals research, epidemiology, detecting 
nuclear proliferation, and a host of other specialized applications. For example, in the case of 
money laundering, the entities might include people, bank accounts and businesses, and the 
transactions might include wire transfers, checks, and cash deposits. Exploring relationships 
among these different objects helps expose networks of activity, both legal and illegal. 

Strengths 
Link analysis often makes information accessible that is not apparent from any single data 
record. 

Weaknesses 
Link analysis is as much an art as a science, and just configuring a link analysis can be a major 
endeavor. 
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Log-Linear Models 

Log-linear models provide a systematic approach to the analysis and modeling of the observed 
cell frequency of occurrence in a cross-tabulation. Developed purely for understanding the 
structure and modeling of categorical data.  

Cross-tabulation Analyses 
In their most general form, log-linear models are used to predict the cell frequency of 
occurrence in a cross-tabulation of independent variables. Hypotheses about the relationships 
between variables in the table can be tested by including parameters representing various levels 
of relationship complexity in the model. Such analyses are analogous to the analysis of the 
correlation structure of continuous variables.  

One of the more useful areas of cross-tabulation analysis in business contexts involves models 
for measuring changes in behavior over time. Typical applications are analyzing the sequence of 
products purchased by customers from one purchase occasion to the next and the analysis of 
brand switching behavior over time.  

The table below illustrates the type of data that are used in purchase sequence analyses. These 
data could be produced from a historical transaction file in a number of ways, such as recording 
the sequence of the next two products purchased subsequent to a fixed date by each customer in 
the file. 

A B C D TOTAL
A 1,701 6,472 6,921 3,190 18,284
B 2,278 8,954 9,387 4,463 25,082
C 1,632 5,799 6,879 3,021 17,331
D 1,520 5,371 6,219 2,599 15,709

TOTAL 7,131 26,596 29,406 13,273 76,406

OBSERVED FREQUENCY COUNTS

Second Product Purchased

First 
Product 
Purchased

 
The most basic question that arises from such a table is whether the product purchased first is 
independent of the product purchased next. The log-linear representation of this model of 
independence is: 

log mij = u + u1(i) + u2(j) 

In this model, the logarithm of fitted cell counts mij can be decomposed into the sum of an overall 
mean u, a row effect u1(i) and a column effect u2(j) (hence the term “log-linear”). Independence of 
row and column effects is represented by the absence of an interaction term. The test of 
independence in this case is the familiar chi square test of independence. For these data, the chi 
square statistic is 51.718. With 9 degrees of freedom, the p-value is much less than 0.0001.  

However, because of the large sample size, significance levels hold little meaning in this 
example. A more fruitful approach to understanding the data is to conduct an examination of the 
sources of the lack of fit with the model of independence and draw conclusions from the 

                                                 
18 Pearson’s chi square statistic X2, calculated as follows: ∑ −

=
Expected

ExpectedObservedX
2

2 )( . The expected value 

of each cell under the model of independence is simply the product of the row probability, the column probability, 
and the sample size. 
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findings of that investigation. A simple but valid way to examine the sources of lack of fit is to 
produce a table of standardized residuals of the chi square statistic, as follows: 

A B C D
A -0.13 1.35 -1.38 0.24
B -1.30 2.39 -2.71 1.61
C 0.36 -3.01 2.56 0.19
D 1.40 -1.32 2.23 -2.48

STANDARDIZED RESIDUALS

Second Product Purchased

First 
Product 
Purchased

 
The calculated value in each cell is its signed contribution to the overall chi square statistic19. 
This table shows that the association between first and second purchase is primarily due to the 
loyalty of users of products B and C (and their antipathy to the other product in the pair) and 
movement from product D to product C. 

When “structural zeros”20 are present in the cross-tabulation, the calculation of the chi square 
statistic becomes more challenging, in that there is no closed form expression for estimated cell 
counts. Consequently, some form of iterative procedure for estimating cell counts is required. 
Typically, maximum likelihood estimates (MLEs) are produced using a non-linear optimization 
algorithm. Luckily, the likelihood function for log-linear models has a single maximum, so that 
global convergence is guaranteed. Another useful procedure for producing estimated cell 
counts—one that does not require the specification of the likelihood function – is Iterative 
Proportional Fitting (IPF). 

Logit Models 
Log-linear models can also be applied to predict a categorical response (actually, the logit21) in 
a cross-tabulation of predictor variables and an outcome variable. This technique is analogous 
to regression modeling of continuous dependent variables. An example of logit modeling using 
two independent variables (age and residence) and a binary outcome variable (taking the values 
“good” or “bad”) follows.  

                                                 
19 That is, 

Expected
ExpectedObserved − . This value is analogous to a z-score for continuous data.  

20 In contrast to “sampling zeros,” which are zero counts that occur due to insufficient sample sizes. 
21A logit is the natural log of the odds of occurrence of a binary outcome. For a binary outcome Y  with values 1 and 

2, where p = Pr Y = 1x( ), logit( p) = loge
p

1− p
 
 
 

 
 
 

.
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Own Rent TOTAL
< 30 65 480 545
30 + 680 375 1,055

TOTAL 745 855 1,600

Own Rent TOTAL
< 30 35 120 155
30 + 120 125 245

TOTAL 155 245 400

Own Rent TOTAL
< 30 0.62 1.39 1.26
30 + 1.73 1.10 1.46

TOTAL 1.57 1.25 1.39

OBSERVED FREQUENCY COUNTS

Outcome = Good

Outcome = Bad

OBSERVED LOGIT

Residence

Residence

Residence

Age

Age

Age

 

We might hypothesize that the relationship between the “good” or “bad” outcome and the 
predictor variables can be represented by the overall mean effect (the overall mean of log-odds) 
and the main effects of each predictor (the deviations of row total or column total means of log-
odds from the overall mean): 
Expected  Logitagei , residj

= u + uagei
+ uresid j  

Using Maximum Likelihood Estimation to estimate the parameters, the model obtained is: 

Expected  Logitij = 1.398+ −.0345 age < 30[ ]+ . 0345age ≥ 30[ ]+ .1450 resid = own[ ]+ −.1450 resid = rent[ ] 
The estimate of the logit of the cell representing Age < 30, Residence = Own is therefore:  
Expected  LogitAge<30, resid =own = 1. 398−.0345+.1450 = 1.5085  
Estimated values of the logits for each combination of age and residence category, along with 
fitted cell counts based on those estimates, follows. 
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FITTED FREQUENCY COUNTS

Own Rent TOTAL
< 30 82 463 545
30 + 663 392 1,055

TOTAL 745 855 1,600

Own Rent TOTAL
< 30 18 137 155
30 + 137 108 245

TOTAL 155 245 400

FITTED LOGIT

Own Rent TOTAL
< 30 1.51 1.22 1.26
30 + 1.58 1.29 1.46

TOTAL 1.57 1.25 1.39

Outcome = Bad

Outcome = Good

Residence

Age

Age

Age

Residence

Residence

 
The main effect parameters provide us with information about the direction and magnitudes of 
the main effects, e.g., those under 30 are expected to have lower logit values than those above 
30, and owners are expected to have higher logit values than renters. The magnitude of the 
effects ( .1450  vs. . 0345 ) indicates that the residence factor is a stronger main effect than age. 
The difference between observed value (0.62) and expected value (1.51) is substantially 
different for this cell as well as others. To test the significance of the difference between 
expected and observed frequencies of occurrence, a Likelihood Ratio chi square value22 is 
computed. A significant chi square value leads us to reject the hypothesis that a main effects 
model provides a sufficient characterization of the structure of this data. In this case, the chi 
square value is 24.71, which corresponds to a p-value of 0.000001 with the 1-degree of freedom 
in the main effects model. Therefore, the main effects model is rejected, and we conclude that a 
significant interaction between age and residence is present. 

A simple way of gaining an understanding of the source of the interaction effect is to calculate 
standardized residuals for the fitted main effects model relative to the observed counts. 

                                                 
22 The Likelihood Ratio chi square statistic or likelihood ratio criterion χ L

2  is generally used as the goodness of fit 
measure for logit models, where 

χ L
2 = 2 ⋅ Observed( ) ⋅loge

Observed
Expected

 
 
 

 
 
 

 

 
 

 

 
 ∑  
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Own Rent
< 30 -1.87 0.79
30 + 0.66 -0.85

Own Rent
< 30 3.97 -1.44
30 + -1.44 1.62

Age

Outcome = Bad

Residence

Age

STANDARDIZED RESIDUALS

Outcome = Good

Residence

 
In this case, the major source of the interaction is clearly the count of young owners with bad 
outcomes, which has a much higher observed value than the main effects model would predict. 
One interpretation of this result is that the overall positive effect of ownership on outcome does 
not apply among the young. 

One might have foreseen this result by comparing the observed logit values in the cells to their 
marginal row and column values. If the main effects model is appropriate, the cells should 
reflect the direction and magnitude differences of the marginal totals, when in fact the observed 
logits show reversals in patterns and differences in magnitudes. 

Applications 
The example above illustrates the value of testing the fit of log-linear models in various 
applications. Log-linear models are most frequently encountered in the social sciences, where 
the need to understand relationships between categorical data is often required. Marketers have 
used log-linear models for response modeling, with trees as a pre-processor to reduce the 
number of variables. Fair Isaac’s proprietary variable investigation tool, ADVISE, incorporates 
log-linear modeling to automatically identify potential interactions between pair-wise 
combinations of candidate predictor variables. 

Strengths 
■ Provides methods for analyzing categorical data that are analogous to correlation and 

regression analyses of continuous data. 

■ One of the more effective approaches for detecting low-dimensionality interactions between 
variables. 

■ One of the more effective approaches for detecting low-dimensionality interactions between 
variables. 

■ Makes no assumptions about the distribution of the predictor data. 

■ Appealing as a segmentation tool, as it identifies unique segments of data. 

■ Provides an interpretation of the direction and magnitude of relationships 
in multi-dimensional tables. 
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Weaknesses 
■ Data get sparse quickly as dimensionality increases. 

■ Model is usually limited to low level of dimensionality, unless a very large sample of data is 
available. To be effective, this technique needs to be combined with a variable reduction 
pre-processor. 

■ Requires data to be categorical. 
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Multiple-Objective Decision Analysis 
Rarely in realistic decision problems23 is there a single objective. When there are  
two or more objectives, they typically conflict, in the sense that some strategy is optimal—
performs best—with respect to one objective, while a different strategy is optimal with respect 
to another.  

When multiple objectives are at stake, they must somehow be aggregated into a single measure 
of performance, to which a decision rule can be applied, unless a subjective decision rule is left 
to the decision maker’s choice. One way to reconcile conflicting objectives is through tradeoffs. 
The decision maker needs to articulate his or her preferences in terms of tradeoffs among the 
objectives.  

Explicit tradeoff factors allow decision makers to specify how much they are willing to give up 
in one objective to gain a unit in another. For example, in a credit card portfolio, where both 
loss and volume are important, a tradeoff could measure how much the portfolio manager is 
willing to risk in expected loss in order to increase expected volume of 1000 accounts. 

The limitation of tradeoff factors is that their value is implicitly constant throughout the 
applicable range of the objectives, which typically is not true. For example, in the portfolio 
management example, the manager may be willing to increase expected losses by $10,000 to 
increase volume from 15,000 to 16,000 accounts, but only by $5,000 to increase volume from 
100,000 to 101,000 accounts. Another shortcoming of tradeoff factors is in their failure to 
capture interactions among objectives. 

Efficient Frontiers 
A simple and very effective way to graphically depict the tradeoffs among objectives is by 
using efficient frontiers. Given a decision model, a frontier represents, in the space of two or 
more objectives or attributes24, the set of all achievable points by a specific strategy.  

Figure 1 shows, for example, the expected-Volume-expected-Profit frontier associated with an 
accept-reject strategy in a credit portfolio origination decision, based on a single risk score. It 
illustrates that the lower the score cutoff, above which applicants are accepted, the higher the 
volume. In the high range of score values, where decreasing the cutoff mainly accepts “Good” 
applicants, the profit also increases. In the low range, however, continued decrease of the score 
cutoff results in reduced profit, because more and more “Bad” applicants are accepted. Only the 
thicker portion of the frontier is efficient in the sense that, for any given level of expected Profit, 
all decision makers would prefer a higher, rather than a lower, expected Volume. 

The choice of the operating point on the efficient frontier should be determined by the decision 
maker judgmentally, by considering the subjective tradeoff between profit and volume. A 
portfolio manager for whom volume is relatively more important, will choose a lower score 
cutoff, corresponding to point A, while another, for whom volume is relatively less important, 
will choose a higher score cutoff, corresponding to point B. In fact, if the portfolio manager can 
assess his or her tradeoff factor between Profit and Volume, the optimal point on the efficient 
frontier would be the one where the slope of the tangent line equals the tradeoff value. 
 
 
                                                 
23 Decision problem formulation is discussed in the section “Decision Analysis: Key Concepts and Tools”. 
24 An attribute in this context refers to the quantity and appropriate scale that measures the achievement of an 
objective. For example, cost in dollars is the objective when minimizing expected cost. 
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FIGURE 1: EFFICIENT FRONTIER IN PROFIT-VOLUME SPACE 

 
Tradeoffs can be regarded as a way to assign weights of importance to the various objectives. 
Multi-attribute utility theory provides a framework to assign these weights systematically, such 
that interactions among objectives, as well as risk attitude, are also taken into account. The 
decision rule is then to choose the strategy that maximizes the expected multi-attribute utility25.  

Applications 
Multiple-objective decision analysis has been applied explicitly in many areas of government 
and medical decision making, and only in relatively few specific business areas, such as 
location analysis. In the credit and financial services industries, it has become more and more 
important in recent years to explicitly model objectives such as loss, market share, and risk, in 
addition to net profits.  
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Neural Networks  

A neural network26 (NN) is an information processing structure that transforms a set of inputs into a set 
of outputs (see Figure 1). The manner in which a NN performs this transformation is inspired by 
researchers’ understanding of how the human brain and nervous system process information. More 
specifically, a NN is a collection of simple processing units linked via directed, weighted 
interconnections (see Figure 2). Each processing unit receives a number of inputs from the outside 
world and/or other processing units, weights these inputs based on the weights of the corresponding 
interconnections, combines these weighted inputs, produces an output based on this combined input, 
and passes this output to other processing units via the appropriate weighted interconnections (see 
Figure 3). Mathematically, this process can be represented by a function that maps the set of inputs to a 
set of outputs. In general, this function is non-additive and nonlinear. 

FIGURE 1: AN INFORMATION PROCESSING STRUCTURE 

Inputs Outputs

 

The development of a NN generally consists of the following three steps: 

1. The first step is the definition of a network structure. The network structure is determined 
by the number of processing units and the manner in which these processing units are 
connected. 

2. The second step is the definition of the computational aspects of the network or how the 
individual processing units combine and transform inputs. Once the developer has 
completed the first two steps, she has defined the form of the mathematical formula that 
relates the inputs to the outputs. 

3. The final step is the determination of a set of weights such that the network performs a 
useful function. This process is generally iterative; data are presented to the network and the 
weights are updated after each presentation according to some mathematical rule. Hence, 
this iterative process is often referred to as training, adaptation, or learning. 

                                                 
26 More accurately called artificial neural network. 
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FIGURE 2: A COLLECTION OF SIMPLE PROCESSING UNITS LINKED VIA DIRECTED, WEIGHTED 
INTERCONNECTIONS 

OutputsInputs

 

There are a variety of different NN paradigms, only a few of which are appropriate for 
statistical modeling applications. The most common neural network model used in commercial 
applications is the multilayer perceptron neural network. This neural network uses the back 
propagation mathematical algorithm to determine the optimal set of interconnection weights. 
The goal of the backpropagation algorithm is often the same as least-squares regression27. As a 
result, the backpropagation algorithm is often classified as an iterative, nonlinear, least-squares 
regression technique. 

FIGURE 3: A SIMPLE PROCESSING UNIT 
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27 The objective of the backpropagation algorithm is to find the set of interconnection weights such that the 
mathematical formula represented by the backpropagation neural network minimizes the sum of the squared errors 
between the network outputs and the desired outputs over some data set. 
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Let us look at an example of a simple NN developed for a credit scoring application. This 
simple network is represented graphically in Figure 428. The inputs are “age” and “owner.” The 
value of the input “age” is simply the age of the applicant. The value of the input “owner” is 1 if 
the applicant owns their residence, otherwise its value is 0. The output of the network is a 
“score” that indicates the likelihood that an individual will be good in the future. 

FIGURE 4: A SIMPLE ANN 
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Applications 
Neural networks, and multilayer perceptron neural networks in particular, have been used to 
address a variety of problems, a few of which are listed below: 

■ Optical character recognition 

■ Industrial adaptive control systems and robotics 

■ Image compression 

■ Medical diagnosis based on a set of symptoms 

■ Statistical modeling 

Strengths 
■ Model non-linear, non-additive relationships in data 

■ Handle both continuous and categorical predictors and outcomes 

■ Handle multiple outcomes in a single model 

■ Are not a proprietary technology (i.e., are readily available as software) 

Weaknesses 
■ Provide little data insight and are difficult to interpret 

■ Can overfit the development data if used naively29 

■ The solution may be sensitive to the starting point due to the possibility of multiple locally 
optimal solutions 

                                                 
28 This NN can also be represented mathematically be the following function: 

Score = f 50w + 53w ⋅ g 30w + 31w ⋅ age + 32w ⋅ owner( )+ 54w ⋅h 40w + 41w ⋅ age + 42w ⋅ owner( )( ) 

where the functions f, g, and h are nonlinear functions and  w ij  are the interconnection weights between  
nodes i and j. As a result, the output “score” is a nonlinear function of the inputs “age” and “owner.” 
29 Deploying advanced statistical techniques such as penalized objective functions and cross-validation methods can 
alleviate this danger. 
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Pattern Recognition  
Pattern recognition can be defined as the categorization of input data into identifiable classes via 
the extraction of significant features or attributes of the data from a background of irrelevant 
detail. The historically most frequent areas of application are in spatial pattern recognition—3-
D image processing, character and voice recognition, and in temporal pattern recognition—
weather forecasting and financial time series forecasting.  

The field of pattern recognition employs a large variety of technologies including regression, 
clustering, genetic algorithms, principal component analysis, trees and neural networks. Pattern 
recognition, like other fields in the data mining arena, are characterized by automated searches 
over a large number of observations and huge combinatorial spaces. While the problems 
traditionally addressed in pattern recognition—character recognition and image processing—are 
somewhat unique, the technologies employed are not. 

Basic Components 
The basic components of pattern recognition are feature extraction and classification. Feature 
extraction is the process of converting potentially huge amounts of raw data into a sufficient, 
manageable vector of features, via data compression and dimensionality reduction techniques. 
Features can be the original raw input but are more often transformations of that raw input. The 
transformations can be simple—the main effects as represented by the original inputs—or they 
can be quite complex—high order interactions across many inputs. (In Fair Isaac terms, a 
typical feature vector would be represented by the attributes of generated predictor variables—
the predictors themselves could represent main or interaction effects.) 

For example, the problem may be to identify authorized personnel in a secured building from a 
facial scan. Feature extraction from a facial snapshot entails segmenting the image into many 
small local regions, and extracting the most important features from within and across regions, 
e.g. the length of the ear lobe and the distance between ear lobe and corner of eye.  

This process of feature extraction is geared towards improving the raw data for classification 
purposes. It might begin with a pre-processing step, which might standardize, scale, clamp or 
smooth the raw input data. The next step focuses on positing and assessing the value of a wide 
variety of potential transformations. The transformations most helpful in the classification 
process are retained. This wide set of potential transformations often are generated from one or 
more of: 

■ Domain expertise applied directly by the analyst to specify particular transformations; 

■ Automated creation of features through adaptive function estimation algorithms (neural 
networks, trees and Multivariate Adaptive Regression Splines (MARS) fall into this 
category); 

■ Automated creation of features through genetic algorithm searches over a family of possible 
transformations (Fair Isaac’s Data Spiders technology falls into this category); 

■ An algorithmic approach to iteratively transform the raw inputsthat is to say a 
transformation with no closed, algebraic expression; 

■ The search across these potential transformations can also take a variety of forms from 
traditional optimization techniques to genetic algorithms to efficient combinatorial searches, 
which are often customized to the particular data source or transformation set. 
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Classification is the partitioning of the feature space into decision regions which correspond to 
classes, such that each instance of a feature vector can be classified as belonging to one of N 
classes. In the authorized personnel example, given a snapshot instance where the ear lobe is 3 
mm and the distance between ear lobe and corner of eye is 12 mm, the image may be classified 
reliably as belonging to authorized personnel member X. A classification algorithm provides the 
parameter estimates for the features identified in the feature extraction step. The distinction 
between feature extraction and classification steps is blurring, as computing enhancements 
allow for greater automation of the entire process.  

Pattern recognition technology 
There are thousands of hybrid approaches, representing various combinations of technologies 
and practical guidelines, used in the field of pattern recognition. Most of the technologies are 
drawn from the fields of machine learning and statistics.  

Feature extraction methods can draw on the experts’ application domain expertise, but most rely 
on automated, exhaustive or filtered searches and evaluations across a very large combinatorial 
space. For example, one simplistic rule-based approach to a credit card fraud problem would be 
to find all ‘rules’ or subsets of data where the probability of fraud is ‘very high’. For a data set 
with 100 predictors of 5 attributes each, that would mean searching across 5100 possible rule 
combinations. In order for searches of such magnitude to occur in real time, intelligent database 
management, in the form of query optimization and parallel data base servers, is generally 
required of the search software. Genetic algorithms have also successfully been used to make 
the search dilemma more tractable. On the statistics side, principal component analysis, 
clustering and Bayesian networks have been used to identify features and reduce the problem’s 
dimensionality. 

Classification technologies run the gamut of modeling technologies. A partial list includes 
discriminant analysis, linear and non-linear regression, tree methods, and various types of 
neural networks. Trees, because of their history with rule-based systems in AI, seem to be a 
popular approach. Neural networks, which like trees make no assumptions about the data and 
capture interactions automatically, are also a commonly used approach for classification. 

Applications 
Pattern recognition techniques are often used for image processing, character and voice 
recognition, as well as weather forecasting and financial time series forecasting. Applications 
continue to expand with recent examples in the area of credit risk, marketing and fraud 
detection model development. Descriptive modeling of web site behavior built by analyzing 
click-stream data is another area with success in the pattern recognition field.  

Strengths 
■ Can increase the predictive power of classifiers substantially by finding valuable new 

patterns. 

■ Automated search capabilities inherent in most pattern recognition techniques can leverage 
analyst time and hasten the learning process for new data sources or classification problems. 

■ Wide field applicable to many problems across many different industries. 
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Weaknesses 
■ Patterns discovered might be spurious or not representative of future cases. Sample tuning 

can be an issue with some pattern recognition techniques 

■ Definition of a “valuable” pattern might be unique to a particular problem. Borrowing 
pattern recognition techniques from a different problem without consideration can produce 
meaningless features and classifiers. 
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Regression  

Regression is a family of prediction modeling techniques. When “regression” is mentioned, care 
must be taken to understand which technique is being discussed to avoid misunderstanding. The 
goal of regression, as in many competing techniques, is to model the relationship between 
predictor variables and the desired outcome variables so that in the future, when the outcome 
variable is unknown, it can be estimated or predicted. 

The method of arriving at the mathematical formulation depends on the structural assumptions 
of the relationship between predictors and expected outcome, as well as distributional 
assumptions regarding the outcome variable. Particular examples include the least squares 
method for continuous outcomes and logistic regression for binary outcomes. Many of these 
methods are particular instances of the family of Generalized Linear Models (GLMs), which are 
fitted via the Maximum Likelihood principle. 

The simplest regression would, for instance, establish a straight-line relationship between 
applicants’ age and their income. Regression can go far beyond this scenario by incorporating a 
greater number of predictor variables. There are more advanced regression techniques for 
modeling relationships between the predictors and the outcome that are curvilinear (i.e., 
quadratic or higher order polynomial) or non-linear. 

It is worth noting that many vendors of solutions will compare their results to a  
“traditional statistical approach.” In many cases this can be interpreted as one of the regression 
techniques. 

Applications 
Regression is probably the most widely used technique for building models involving 
continuous outcome variables. 

Strengths 
� Easy to interpret. 

� Widely used, well documented. 

� Can be a mixed model of continuous and categorical predictor variables. 

� Allows for a wide range of statistical diagnostics and significance tests. 

Weaknesses 
� Regression cannot elegantly handle missing values on a variable-by-variable basis. Data 

must be lost, or some assumption made about the missing data to give it a value. 

� Score weight patterns for categorical data cannot be made palatable. 

� The model assumes fixed increments/decrements in the score values for variables on an 
interval scale. 

� May not capture, or at least make readily apparent, interactions in data. 

� Categorical variables may have to be represented by dummy variables, i.e., multiple 
variables which represent the absence or presence of each component attribute in the 
predictor variable. 



A Discussion of Data Analysis, Prediction and Decision Techniques  

Copyright © 2001-2003 Fair Isaac Corporation. All rights reserved.  63

Multiple linear regression 
This approach is often used for predicting a continuous outcome (income, revenue, amount of 
purchases) from several predictor variables. It has been used on occasion for predicting 
categorical outcomes, but in general, this is a flawed approach and within this family, logistic 
regression is the preferred solution. In its simple form, the estimation of the coefficients to be 
applied to each predictor variable is computed simultaneously, i.e., the developer determines 
ahead of time what are the candidate predictor variables for the model. 

Strengths 
■ Multiple regression is a technique with which most people are familiar. Most statistical 

packages also include various significance tests (e.g., tests involving certain slopes) and 
diagnostic tests (e.g., residual test for normality).  

■ Irrespective of the distribution of the dependent variable, the least squares regression 
estimators are the best linear unbiased estimators (i.e., have minimum variance among all 
linear unbiased estimators). 

Weaknesses 
■ Not robust when outliers are present in the data. 

■ The assumption that the outcome variable is normally distributed for each fixed 
combination of the predictor variables is not necessary for the least-squares fitting of the 
regression model, but is required, in general, for inference-making purposes. In this regard, 
the usual parametric tests of hypotheses and confidence intervals used in a regression 
analysis are “robust” in the sense that only serious departures of the distribution of the 
dependent variable from normality can yield spurious results. This is classified as a 
weakness only because for typical data encountered at Fair Isaac, this assumption is 
violated. For outcomes that are, in fact, normally distributed with respect to the predictor 
variables, this would not be a weakness. 

Stepwise (multiple linear) regression 
As an extension to the standard case, predictor variables are sequentially added to and/or 
deleted from the solution until there is no improvement to the model. The forward selection 
method starts with an empty model and at each step adds the variable that would maximize the 
fit. The backward elimination method starts with a model containing all potential predictors and 
at each step removes the variable that contributes least to the fit. The stepwise elimination 
method develops a sequence of regression models, at each step adding and/or deleting a variable 
until the “best” subset of variables is identified. Note that the term “stepwise” is sometimes used 
vaguely to encompass forward, backward, stepwise, as well as other variations of the search 
procedure. 

Strengths 
■ Can be used to automatically select a reasonably good subset of possible scorecard 

characteristics. 

■ Allows user to demonstrably “exhaust” the data. By running the various Selections 
(Forward, Backward, Stepwise) separately, one can also gain helpful insight into the effect 
of the correlation of the predictive variables on parameter estimates. 
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■ Fast and convenient method to screen a large number of variables and simultaneously fit a 
number of regression equations. Stepwise regression is probably the most widely used 
automatic search procedure. 

Weaknesses 
■ Sometimes arrives at an unreasonable “best” set when the predictor variables are highly 

correlated or include several variables that represent transformations of the same source 
variables. 

■ Small changes in the data can result in very different models. 

■ As with all automatic methods, the resulting models will be tuned to the development 
sample, unless “engineered” for future use. 

Logistic regression 
The dependent variable in this case is categorical while the predictor variables can be 
continuous or categorical or both. This method is statistically appropriate for modeling of 
binary outcomes. The usual objective is to estimate the likelihood that an individual with a 
given set of variables will respond in one way, or belong to one group, and not the other. 

Methodology for performing stepwise logistic regression is available. It follows the same 
principle as stepwise linear regression. 

Applications 
Mostly used for modeling of binary outcomes (e.g., good/bad, high-revenue/low-revenue, 
response/no-response). Some packages support multinomial dependent variable prediction. 

Strengths 
■ Can have mixed continuous and categorical predictor variables. 

■ Results are already in probability or in log odds scale. 

Weaknesses 
■ As is the case in most regression procedures, logistic regression is also sensitive to large 

correlations between the predictor variables in the model. 

■ For categorical predictor variables that are converted to dummy variables, there is typically 
no mechanism for constraining the model coefficients to take on a directional pattern. 
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MARS (Multivariate Adaptive Regression Splines30 ) 
The 1988 brain child of Jerome Friedman, MARS combines properties of regression and tree 
techniques. Like regression, MARS attempts to optimize a fit of a dependent variable using the 
least squares method. Unlike regression, MARS allows for the specification of more complex 
terms than linear and additive ones in the model. Like trees, MARS partitions data, but unlike 
trees, MARS allows for the capture of linear and additive relationships and for the splitting over 
all nodes at each step, rather than just the currently terminal ones. Either categorical or 
continuous outcomes can be modeled using categorical or continuous predictors with this 
technique. A very simple example is a model predicting annual income (I) using the categorical 
variables Education Level (E) and Region (R) and the continuous predictor Age (A) : 

I = 10.0 + 0.5·A + [-5.0|R=rural] + [5.0|R=urban and E=H.S.] + [10.0|R=urban and E>H.S.] 

In this example, a 30 year old rural resident with a high school education would have a 
predicted annual income of $20,000 (10+.5*30-5) a year, while a 50 year old urbanite with a 
college degree would have a predicted annual income of $45,000 (10+.5*50+10). Note that the 
first two terms are applied to the entire population, while the last three terms are applied only to 
specific regions of the data. The relationship between Region and Education Level, where the 
weights differ depending on the level of the two variables, is an example of an interaction. 

The MARS algorithm uses a forward stepwise approach to add terms that minimize variance, 
until a user-specified maximum number of terms is reached. At this point, a backward stepwise 
deletion strategy is employed to select the combination of terms that provides the best fit on a 
hold out or cross-validated sample. 

Applications 
Used for modeling of binary or continuous outcomes and the detection of interactions. 
Recognized in academia but not well known in industry. An approach for detecting interactions, 
recommended by Friedman, is to run a comparison of two MARS models, one with strictly 
additive terms, and the other including both additive and interactive terms. If the interactive 
terms improve the fit considerably, they can be considered significant. 

Strengths 
■ Models both additive and non-additive relationships. 

■ Handles both continuous and categorical predictor variables and outcomes. 

Weaknesses 
■ As is the case in most regression procedures, MARS is sensitive to large correlations 

between the predictor variables in the model. 

■ Provides limited capabilities to engineer solutions, control missing values and inject domain 
expertise. 

■ Depending on the model form, MARS is likely to be significantly more computationally 
intensive than additive modeling techniques. 

                                                 
30 Splines are curves which are required to be continuous and smooth. Splines are generally n-degree piecewise 
polynomials whose function values and first n-1 derivatives agree at the points where they join (the abscissa values of 
the join points are called “knots”). MARS replaces the step function used in trees with a truncated power spline basis 
function in order to produce a continuous model. 
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RFM (Recency, Frequency, Monetary Value) 
This approach used by direct marketers generally takes one of two forms: 

■ As a two- or three-dimensional matrix. 

■ As the basis of a “score”. 

In either case, RFM is a simple to create and simple to use construct designed to assist in 
targeting marketing efforts or in segmenting communications. 

Three of the most important types of predictors of response among existing customers are: 

■ Recency, defined as the time since the customer last made a purchase. 

■ Frequency, defined as the number of purchases by a customer (often over a defined time 
period, such as the past 12 months). 

■ Monetary value, defined as the dollar amount purchased by the customer (often over a 
defined time period).  

Response rates tend to be highest among groups of customers with low values of Recency (i.e., 
recent purchases) and high values of Frequency and Monetary value. 

Perhaps the simplest use of RFM is to intervalize these measures and to then measure past 
response rates in each cross-classified cell of the resulting 3-dimensional matrix. Response rates 
will usually vary substantially across cells; ranking the cells by past response helps the marketer 
determine groups more likely to respond in the future. 

Simple ranking has some serious drawbacks. Depending on the total number of customers being 
examined and the strength of association of the R, F, and M predictors, some of the cells may 
have very small counts. Response rates based on small counts will not be good estimates of the 
true response rates for those cells. Consequently, a simple ranking by response rates may not be 
the best ranking. One way to improve the ranking is to impose rules that enforce a logical order. 
A simple scheme is to override response ranks for any pair of cells where two of the RFM 
measures have the same value and the cell with the better value of the third measure has a lower 
response rate. Using such a scheme results in cell rankings that have higher intuitive appeal.  

An RFM scheme can be developed even before response data are available. In such cases, initial 
decisions are made based on a hypothetical relation between RFM and response. Over time, 
response can be added to the matrix to give feedback for new strategies. 

Literature in the direct marketing realm reveals attempts to parameterize the RFM approach into 
some functional form31. This way, it may be usable in more than just a cell-by-cell basis. 

                                                 
31 If historical outcome data exist in addition to just the predictive data, one could attempt to fit the formula version 
of RFM as some form of a non-linear regression. The functional form would reflect that the outcome is proportional 
to the “frequency” and “monetary value” components and inversely proportional to the “recency” components. For 
example, one such proposed functional form seen in the literature is: 

prediction =
(1+ F)⋅ (1+ M)p

Rq
 

 
 

 

 
  

with 0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. 
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Applications 
RFM is widely used in marketing applications. Even though it is a rough “model,” some assert 
that it may find small pockets of responsiveness that generalized models may miss. Strengths 

■ Good results without gathering performance (response) data. 

■ Easily understood. Appeals to the basic understanding of what predicts response. 

■ Easy to develop and easy to implement. 

■ Easy segmentation tool that results in groups distinguished by factors highly relevant to 
marketers (i.e., response and usage). 

Weaknesses 
■ In its simplest form, makes no attempt to discover underlying relationships. 

■ Focuses on three variables only, which is near the maximum a cell-based scheme can 
support, unless sample sizes are extremely large. Additional factors (such as tenure or 
category purchase breadth) result in a multiplication of the number of cells, inevitably 
leading to unacceptably small cell sizes. 

■ No attempt is made to model the relationship between offer and response, which is critical 
in the effort to understand customer behavior and optimize offers in one-to-one marketing 
strategies. 
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Sequential Decisions and Bayesian Learning 
Most decision situations involve two or more decisions that need to be made at different points 
in time, which are closely related in affecting uncertain events, each other, consequences, and 
the decision maker’s objectives. Sequential decision models are important because when 
choosing an alternative today, the decision maker has to know what additional alternatives he or 
she will have available to choose from in the future, as well as what type of information will be 
observable then which is still uncertain today. 

In a customer-level relationship management environment, for example, the financial institution 
periodically makes proactive offers of new or improved products to customers. It also responds 
to customer requests for new products, such as a consumer loan, or an improvement to a current 
one, such as an increase in credit limit for an existing credit card. If the account manager only 
considers the present decision, using as information only the history and current status of the 
account, the choice may be far from optimal. This is because future possible decisions, such as 
subsequent credit limit increases or decreases, other loans, changes in pricing, etc., are not part 
of the model: the model is oblivious to anything beyond the time horizon of the present 
decision. The optimal resulting choice for the current decision may be quite different, and the 
long-run objectives significantly improved, if the manager considers today all, or at least most, 
of the future opportunities for offers or responses to requests. Such a consideration can only be 
done explicitly and quantitatively using a sequential decision model.  

Sequential models are best depicted graphically using influence diagrams and decision trees. 
Refer also to the section “Graphical Decision Models” for a discussion of these paradigms. 
Figure 1 illustrates an influence diagram of a two-stage credit card campaign decision problem. 
Before making the Offer decision, the only information available to the decision maker consists 
of the Risk Score and the Revenue Score of the candidate32. At the Credit Limit decision, the 
decision maker has observed, in addition to the two scores, whether the customer responded to 
the offer, and, if so, the Income on his or her credit application. This model will provide much 
better strategies than two single-stage models considering the two decisions separately.  

                                                 
32 Alternatives at the Offer node may be some combination of balance transfer amount and APR. 
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FIGURE 1: AN INFLUENCE DIAGRAM FOR A TWO-STAGE CREDIT CARD CAMPAIGN DECISION PROBLEM 

Active Data Collection 
Good sequential decision making is closely related to active data collection33. Some decisions in 
a sequential problem, particularly in the earlier stages, will typically be about, or related to, 
acquiring additional information (in the form of a survey, test, sampling, or other experiment) 
about uncertainties pertaining to the problem. In the customer-level relationship management 
example, the first offer (credit limit increase, for instance) should be optimized to address not 
only the decision maker’s tradeoffs between the risk of default and the prospects of revenue, but 
also as an active collection of data designed to test the customer’s use of the new limits.  

The results of these sequential experiments should be used for continued optimal learning about 
the customer’s behavior and for making future decisions to optimize long term objectives. The 
learning can be done by Bayesian updating of probability distributions.  

Bayesian Learning 
Bayesian inference is the fundamental learning mechanism in decision making, the only 
coherent way to update a decision maker’s beliefs about uncertain events, based on newly 
available data or observations.  

Even in simple, single stage decision models, Bayes rule is often useful. For example, when a 
risk scorecard is developed, we typically have available some prior (“population”) probability 
of the risk performance, ( )p Z , and the conditional score distributions, ( | )f s Z , given “Good” 
                                                 
33 Traditionally known, in a somewhat more restricted sense, as experimental design. Refer to the section on 
”Experimental Design” for further discussion. 
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or “Bad.” This available information and the relationship between the performance and the 
score are shown in the influence diagram in Figure 2(a) by the arc from Z to s. 

In the basic accept-reject decision, depicted in the influence diagram of Figure 2(b), however, 
we need to assess the posterior probability of Z given the score of an applicant, s. To go from 
(a) to (b), we need to use Bayes rule, ( | ) ( ) ( | )p Z s p Z f s Z∝ , which is graphically 
represented by the reversal of the arc between the Z and the s nodes in the influence diagram. 

Z S

(a)

Z S

(b)

D U

 

FIGURE 2: BAYES RULE APPLIED TO A CREDIT GRANTING DECISION 

If we had a second score available for the same individual, say t, we could use Bayesian 
revision to “combine” the information embedded in both scores so that we can improve the 
prediction of Z—and thus the quality of the decision. The process in this case is illustrated by 
the transformation of the influence diagram in Figure 3(a), showing the development of the 
scores, to the one in Figure 3(b), showing how they are combined to predict Z. 

 

 
 
 
 
 

FIGURE 3: BAYESIAN REVISION USED TO IMPROVE THE PREDICTION OF Z 

Influence diagrams with only chance nodes, also called Bayesian networks, allow, through 
formal mathematical interpretation of the structure of their graphs and transformation 
algorithms, powerful probabilistic inference in much larger models then illustrated above. Some 
algorithms are designed to discover the conditional independence and other structural details of 
an underlying model from large sets of empirical data on the component variables. These 
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algorithms—some of which are used at Fair Isaac—enable the simplification of models of large 
problems that would otherwise be intractable.  
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Support Vector Machines 
Support vector machine (SVM) is a new technology for solving the classification problem. The 
technology has also been adapted to solve the non-parametric regression problem, but that will 
not be discussed here. 

The term machine is used, because SVM technology arose in the machine learning community, 
but the term machine is synonymous with score. The term support vector comes from the 
version of the problem where perfect discrimination between binary outcomes is possible. In 
that version of the problem, you find the high dimensional road of maximum width that 
separates the binary outcomes in input space. The input vectors that lie on the edges of the road 
are called the support vectors. They clearly play an important role in the theory. 

A modeling technology can be defined by three elements. The first element is the score 
formula. The second element is the objective function, which needs to take into account both 
training samples and test samples to optimize the classification of new data. The third element 
is the optimization algorithm for finding the “fitted” parameters, which optimize the training 
sample objective function. SVM technology is described below via these three elements.  

SVM score formula 
The key construct in the SVM score formula is the feature. The SVM score formula is any 
linear combination of the features selected for the classification problem. In the standard theory, 
the features are linearly independent. However, multicollinearity can be handled with simple 
remedies.  

There are two approaches to generating features. The first is based on domain knowledge, 
where a library of useful features develops over time. This approach is used for many domains 
of application from scorecards to speech recognition.  

A second approach is more esoteric and implicit. Consider the case where the features are the 
same as the predictor variables. Then the score is a linear combination of the predictors—just 
like classical regression. In this case, you can show that the optimal score coefficient vector is a 
linear combination of the input vectors in the sample. The coefficients of this linear 
combination form a dual parameter vector, whose dimension is the sample size. There is a dual 
formulation of the score development problem, which is an optimization conducted in this dual 
parameter space. The solution to this dual problem involves the inner products between all pairs 
of sample input vectors and the inner products between the sample input vectors and the vector 
associated with the account to be scored.  

This unusual way of looking at the classical problem motivates the implicit approach to 
features. The concept of an inner product between two input vectors can be generalized using 
non-linear kernel functions. An example of a non-linear kernel function is the square of the 
quantity: usual inner product plus a constant. These non-linear inner products are easy to 
compute. If you just replace the inner products in the classical solution with the non-linear inner 
products, you get the optimal linear combination of certain non-linear features, which are 
uniquely associated with the non-linear kernel. These non-linear features never have to be 
computed. Only the inner products have to be computed, which involve only the kernel. The 
features exist implicitly. For the example kernel mentioned above, the implicit features are a 
large set of quadratic polynomials in the original input variables.  
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SVM objective functions 
The objective function for the test sample is the misclassification cost. This can be generalized 
to the case of different costs for the two types of misclassifications, but most of the SVM 
literature is based on equal costs.  

It is a very hard problem to find a linear combination of the selected features, which minimizes 
misclassification cost on the training sample. The SVM approach to this problem is to derive a 
very sophisticated training sample objective function, so that the resulting score validates very 
well with respect to misclassification cost on the test sample.  

The SVM development objective function, which is to be minimized, has two components. The 
first component is the average of the squares of the score coefficients. This component is 
motivated by the case where the training sample of binary outcomes can be perfectly separated 
by a linear combination of features. Among all linear combinations, which accomplish the 
perfect separation, the best one is the one with minimum average of the squares of the score 
coefficients. Best is defined in terms of minimum test sample misclassification cost.  

The second component is quite esoteric. It is based on the concept of a margin slack variable 
(MSV). MSV is a random variable defined on the training sample. It is defined in terms of the 
score, S, the score cutoff, c, and a cushion, u. Consider a “Good” observation. If the score 
exceeds the score cutoff by more than the cushion, then MSV = 0. Otherwise, MSV = (c + u) – 
S. Consider a “Bad” observation. If the score is less than the score cutoff by more than the 
cushion, then MSV = 0. Otherwise, MSV =S - (c - u). Clearly, 0≥MSV  and it is a measure of 
separation between the “Goods” and the “Bads”. The smaller MSV is the better the separation. 
The second component of the SVM objective function is the expected value of MSV.  

This second component of the objective function has to be expressed in terms of the score 
coefficients. There are two ways to do this—parametric and non-parametric. In the parametric 
approach one assumes that the score distribution can be expressed in terms of a few score 
moments. If the score distributions of the binary outcomes are both normally distributed, then 
the expected value of MSV can be expressed in terms of the means and variances of these 
distributions. These means and variances can be expressed in terms of the score coefficients. If 
the score distributions are Gamma distributed, then three moments are needed. 

The non-parametric approach is more intricate. A very large quadratic program is formulated. 
The decision variables are the score coefficients, the score cutoff, and the margin slack variables 
for each observation. So there are more decision variables than there are observations. Let 

kk MSVS   and   denote the score and the margin slack variable for observation k. The second 
component of the objective function now becomes the arithmetic average of the margin slack 
variables over the observations.  

The very large quadratic program also has many inequality constraints. The first set of 
constraints is that the margin slack variables are all non-negative. The second set of constraints 
involves the relationship between the score and the margin slack variables. For “Goods”, the 
constraints are of the form kk MSVucS −+≥ . For “Bads”, the constraints are of the form 

kk MSVucS +−≤ . These constraints are tight only when 0>kMSV . The input vectors for 
the observations with 0>kMSV  can be thought of loosely as support vectors, because these 
observations could not be classified correctly with a nice cushion. Of course, the score for 
observation k can be written as a linear combination of the score coefficients, so all of the 
constraints remain linear in the decision variables. 



A Discussion of Data Analysis, Prediction and Decision Techniques  

Copyright © 2001-2003 Fair Isaac Corporation. All rights reserved.  75

The two components of the objective function are combined by multiplying the first component 
by a tuning parameter, λ , and then adding the two components together. The tuning parameter, 
λ , determines the relative importance of the two components. In other technologies the first 
component has been called the penalty or regularization term.  

For any particular score development, the choice of u  and  λ  can be made to minimize the 
test sample misclassification cost. Of course, this will slightly bias the validation. An additional 
test sample is needed to get a purely unbiased estimate of misclassification cost.  

SVM optimization algorithms 
Once the SVM problem has been set up as a mathematical programming problem, standard 
mathematical programming algorithms can be used to solve it. In the non-parametric case, the 
problem is a very large quadratic program. Standard quadratic programming algorithms can be 
slow, so researchers have developed clever decompositions of the problem to speed things up.  

Applications 
Applications of SVM have begun to crop up in a variety of fields. The literature has mentioned 
applications to speech recognition, chemical classification and protein classification. In general, 
classification is a widely applied field, so the opportunities for this new technology are plentiful. 

At Fair Isaac, SVM has been applied to credit scoring. In the parametric case, Fair Isaac has 
developed a non-linear goal-programming algorithm to solve the SVM problem. This algorithm 
handles extra score engineering constraints, which are not considered in standard SVM theory. 
This SVM approach is an option in Fair Isaac’s new INFORM-NLP score development software.  

Strengths 
■ Score formula can be either simple or complex. 

■ Capture non-linear, non-additive relationships in data. 

■ No data structure assumptions in the non-parametric case. 

■ Can have both continuous and categorical predictors. 

■ Competitive with the state of the art for misclassification cost.  

■ Quadratic programming formulation allows the inclusion of score engineering. 

Weaknesses 
■ Difficult to interpret unless the features are interpretable. 

■ Computationally intensive under the non-parametric case. 

■ Standard formulations do not include specification of business constraints. 
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Survival Analysis 

Survival analysis is a collection of statistical methods where the outcome variable is the time 
until an event occurs. The event of interest may be death or relapse from remission in 
epidemiology, structural failure of a component in a manufacturing reliability test, attrition of a 
bankcard holder, or mortgage prepayment. Time can be days, months, or years from the start of 
the observation period until the event of interest occurs.  

Basic Parameters of Interest in Survival Analysis  
Four basic parameters of interest in survival analysis include: 

1. The hazard function, h(t), specifies the probability that the event of interest occurs at time t, 
given that it has not occurred earlier. The failure event of interest can be death, structural 
failure of a component, customer attrition, mortgage prepayment, etc.  

2. Related to the hazard function is the survival function, S(t), which gives the probability that 
the event of interest does not occur at time t or earlier, i.e. that the event has survived longer 
than time t. 

3. The probability density/probability mass function, f(t), provides the unconditional 
probability of the event occurring at time t. 

4. The mean residual life, mrl(t), measures an observation’s expected remaining lifetime at 
time t. That is, given that the event has yet to occur at time t, the mean residual life provides 
an estimate of an observation’s remaining lifetime. 

Censored and Truncated Data 
Most survival analysis applications involve censored data where the observation period of 
interest is incomplete for some records. Records can be right-censored or left-censored. A 
record is said to be right-censored when the observation period ends before the event of interest 
is observed, for example, subjects remain alive at the end of the study, or consumers continue to 
pay as agreed throughout the observation period. Left censoring arises when the event of 
interest has already occurred at the start of the observation period, for example, subjects have 
already relapsed at the beginning of a medical study but their exact time of relapse is unknown.  

Truncated data occurs when the development data is sampled such that only records where the 
event of interest occurs (i) after the start of the performance period (left truncation), or (ii) 
before the end of the performance period (right truncation) are included in the model 
development.  

Unlike traditional regression methodologies, survival analysis statistical techniques feature 
mechanisms to handle censored and truncated data by incorporating the censoring and 
truncation information in the construction of the likelihood function. An observation with an 
exact event time provides information on the probability that the event occurs at time t, which is 
the probability density function f(t) for continuous timelines. For a right-censored observation, 
the event of interest has not occurred and thus the probability of it occurring is P(X > Cr) = 
S(Cr), where X is the event time and Cr is the right censoring time. For a left-censored 
observation, the exact event time is unknown and all we know is that the event of interest has 
already occurred at the beginning of the observation period. The probability of a left-censored 
observation occurring is then P(X < Cl) = 1 – S (Cl) for continuous timelines, where X is again 
the event time and Cl is the start of the observation period.  
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The likelihood function that accounts for censored data, assuming independent censoring times, 
is just the product of the exact timelines, right-censored, and left-censored components. The 
likelihood function for truncated data is similarly constructed, with an adjustment made to 
account for the fact that only records with event times (i) after a particular time point (left 
truncation) or (b) before a particular time point (right truncation) are sampled. For censored 
non-truncated data, the likelihood function is defined as: 
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where E is the set of exact timeline observations, L is the set of left-censored observations, R is 
the set of right-censored observations, Cl and Cr are the left and right censoring times, 
respectively, and Tl nd Tr are the left and right truncation times, respectively.  

Semiparametric Proportional Hazards Regression Model 
A popular semiparametric regression survival analysis technique for modeling time-until-event 
outcome variable is the proportional hazards model that was first proposed by D.R. Cox. The 
proportional hazards model can estimate time-until-event based on an individual’s profile. For 
instance, a proportional hazards model may be built to estimate a consumer’s time until 
mortgage prepayment, based on the individual’s credit and demographic profile. This might 
include his/her risk score, loan-to-value (LTV), and income.  

For an observation with profile x , the hazard function for the proportional hazards 
model is defined as:  

)'exp()(),,( ββ xthxth o=  

The hazard function ),,( βxth above expresses the hazard rate as a multiplicative relationship 
between the arbitrary baseline hazard function )(tho  and the exponential function of the 

covariates x  multiplied by a set of regression coefficients β . 

The relative risk, also known as the hazard ratio, of an individual with a risk profile x  versus 
one with a risk profile x * is defined as ),,( βxth  / )*,,( βxth  = )'exp( βx  / )*'exp( βx . 
The proportional hazards model is so called for its hazard ratio being constant and thus 
proportional over time. 

The proportional hazards model is classified as a semiparametric model because the covariate 
effect is parameterized while the baseline hazard rate is left non-parameterized. Parameter 
estimates for the Cox proportional hazards model are obtained by maximizing its partial 
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likelihood function – a function that does not require explicit specification of the baseline 
hazard function.  

The main advantage with the proportional hazards model is that the analyst does not need to 
specify the distributional form of the survival function in fitting the model. In general, the 
proportional hazards model can provide reasonable estimates of time until the event of interest 
occurring when the basic shape of the underlying survival curve is not well understood.  

Parametric Regression Models 
Parametric regression models for modeling time-until-event outcome variable include survival 
analysis methods where both the survival function and covariate effect are parameterized. When 
the survival function is correctly chosen, parametric regression survival analysis techniques may 
provide a better estimate of time until the event of interest occurs. The semiparametric 
proportional hazards model, however, can lead to better estimates than with an incorrectly 
chosen parametric regression model. In applications where the basic shape of the survival curve 
is understood, parametric regression models are preferred, as the survival distributional form is 
explicitly incorporated into the model. 

Commonly selected distributions to model the parametric survival function include the 
exponential, Weibull, log logistic, and log normal distributions. The exponential regression 
model assumes constant hazard rate over time for a given individual with profile x *. The 
Weibull distribution has a hazard rate that can be monotonic increasing (α > 1), monotonic 
decreasing (α < 1), or constant (α = 1). Both the log logistic and log normal distributions 
feature a hazard rate that increases initially and then decreases.  

Applications 
Survival analysis statistical procedures are widely used in analyzing data from medical studies 
and manufacturing quality control tests. In the credit industry, survival analysis can be used to 
predict time until a bankcard holder attrites or time until a mortgage loan is prepaid. Instead of 
modeling whether the bankcard holder will attrite or whether the borrower will prepay his/her 
mortgage in a predefined observation window, survival analysis attempts to predict when the 
attrition or prepayment may occur.  

Strengths 
■ Predicts the likelihood of an event occurring over time. 

■ Can be used to estimate when the event of interest occurs. 

■ Features mechanisms to handle censored data. 

Weaknesses 
■ Might be less predictive compared to binary outcome models in predicting the likelihood of 

an event occurring over a predefined period.  

■ Can be cumbersome to calculate the hazard rate over time for every individual.  
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Tree Modeling Methods 
“Tree” modeling technology includes classification and regression techniques, which rely on 
successive partitions of the data to predict the desired outcome. The resulting “tree” contains 
nodes or subsets in which observations within a node are similar based on the specified 
measure, while sample points in different nodes are dissimilar with respect to the same measure. 
These techniques are not to be confused with decision trees34 or the implementation of simple 
if-then-else rules. However, the latter may well be the result of these modeling approaches.  

An example of an objective might be to identify subsets most dissimilar in some outcome 
variable such as response. An illustration of results from a tree modeling approach, using a 
dichotomous response rate (R.R.) as the objective, is shown in Figure 1. Note that some 
techniques are limited to dichotomous splits at each node; others can create multiple splits. In 
this example, the total sample of 100,000 has an overall response rate of 5%. By testing a whole 
series of alternative splits, the technique determines that the variable which gives the “best” 
split is age, and partitions the sample into two groups having response rates of 7% and 3.9%. 
This process continues down through the structure until some stopping criterion is satisfied. 

FIGURE 1. A TREE PARTITIONED BASED ON RESPONSE RATE 

 
Total 

No=100,000 
R.R=5.0%

Age <30 
No=35,000 
R.R=7.0%

Age>=30 
No=65,000 
R.R=3.9%

Sex=Male 
No=20,000 

R.R.=11.0%

Sex=Female 
No=15,000 
R.R.=1.7%

#Kids=0 
No=25,000 
R.R.=6.0%

# Kid=1 
No=15,000 
R.R.=4.0%

# Kid=2+ 
No=25,000 
R.R.=1.8%  

Many of the weaknesses of tree methodologies can be eliminated by building hybrid models 
that combine the concepts of trees and regression. In this hybrid model approach, a shallow tree 
is built. Within each terminal node, a single estimate is replaced by a regression model that fits 
each segment (as defined by the terminal node) of the data. The result is a model that is 
interpretable, captures interactions, and allows for the capture of missing values. An automated 
version of this hybrid model that allows for the automatic testing of many candidate tree 
segmentation schemes is available at Fair Isaac in a tool called Automated Segmentation 
Diagnosis (ASD).  

Applications 
Some flavor of tree modeling technology is found in almost all general purpose data mining 
applications, and is used to solve a variety of prediction and classification problems. Fair Isaac 
has developed its own tree modeling technology called PreClass. Based on the CART 
algorithm, it has been enhanced to allow for multiple outcome modeling, segment profiling and 
the imposition of domain expertise. PreClass is being deployed in Fair Isaac’s Strategy 
DesignerTM for prediction and decision strategy formulation. 

                                                 
34 Decision Trees are described in the section titled “Graphical Decision Models”. 
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Strengths 
■ Simple trees are easy to interpret and visually attractive. 

■ Captures interactions between variables. 

■ No data structure assumptions. 

■ Fast algorithm. 

Weaknesses 
■ Deep trees are difficult to interpret, but may be required for high accuracy. 

■ A tendency toward sample tuning, in the absence of a validation mechanism. 

■ Provide poor node-based estimates.35 

■ The relationships between variables may be difficult to interpret. 

■ Limited number of subsets (and therefore strategic options) for a reasonable sample size. 

■ Do not capture simple linear relationships efficiently. 

■ Limited ability to handle missing values. 
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Utility Theory 
The most coherent way to incorporate decision makers’ attitudes towards risk in making a 
decision under uncertainty, is to assess their utility function for the relevant consequence, e.g. 
profit, and then choose the strategy that maximizes the expected utility. Utility theory provides 
the underlying foundations and procedures for constructing a decision maker’s subjective utility 
function.  

Risk Attitude36 
Most commonly, the decision maker chooses his or her certainty equivalent values for a number 
of specific simple lotteries, which have outcomes in the range relevant to the decision problem 
in question. A couple of simple lotteries are illustrated in Figure 1. The certainty equivalent for 
a simple lottery is the consequence (for example a dollar amount) that the decision maker is 
willing to accept in lieu of (be indifferent between it and) playing the lottery. For the lottery in 
Figure 1(a), the certainty equivalent (30) exceeds the expected value (25). For the lottery in 
Figure 1(b), the negative certainty equivalent is far less than the expected value. In the first 
case, the decision maker is said to exhibit risk proneness. In the second case, the decision maker 
is said to be risk averse. If given a choice, the risk averse decision maker will prefer: 

■ Any sure amount higher than 30 to the lottery in (a). 

■ The lottery in (b) to sure losses not higher than 5. 

■ Lottery (a) to lottery (b).  

CE(X) = 30
   E[X] = 25 x

.5

.5

51

-1

∼ CE(Y) = -5
   E[Y] = 50 y

.5

.5

200

-100

∼

(a) (b)
FIGURE 1: ILLUSTRATION OF THE SIMPLE LOTTERY 

Single-objective Utility Function 
The result of such an assessment procedure is a utility function of the type depicted in Figure 2. 
Concavity of the utility function represents a region of the domain of the decision maker’s 
assets where the decision maker is risk averse, while convexity represents a region where the 
decision maker is risk prone. The shape and locus of the utility function depend, to a large 
extent, on the current assets of the decision maker. An individual that plays the state-lottery, for 
example, exhibits risk-prone behavior, because the expected value of the lottery is lower than 
the ticket cost. On the other hand, individuals pay insurance premiums, referred to as risk 
premium in the utility theory jargon, because they are typically risk averse in the range of 
values associated with houses, cars, etc.  

By definition: 

Risk premium = Expected value of lottery – Certainty equivalent of lottery. 

                                                 
36 Also referred to as risk sensitivity. 
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Figure 2 graphically illustrates these notions for a 50-50 lottery, Z, in which the decision maker 
can win either $150 or $950. Clearly, [ ] $550E Z = . The certainty equivalent of the lottery, 

[ ]CE Z , is the (certain) dollar value that has the same utility as the expected utility of the 
lottery, [ ( )] .5 ($150) .5 ($950)E u Z u u= + . The risk premium is then [ ] [ ]E Z CE Z− , the 
amount the decision maker is willing to “give up” to avoid the risk. 

Utility

$
0-100

Risk
prone

Risk
neutral

Risk
averse

150 E[Z] =550 950

Risk
premium

u($950)

u(E[Z])

E[u(Z)]

u($150)

CE[Z]  

FIGURE 2 UTILITY FUNCTION ILLUSTRATION 

Multi-attribute Utility Theory 
When multiple objectives are at stake, they must be aggregated into a single measure of 
performance, to which a decision rule can be applied. One way to reconcile conflicting 
objectives is through explicit tradeoffs. The section on “Multiple-Objective Decision Analysis” 
further discusses how tradeoffs can be articulated and represented and what their limitations are.  

Multi-attribute37 utility theory (MAUT) provides a systematic framework to build a multi-
attribute utility function which captures the relative weights of the attributes (objectives), their 
interactions, as well as the decision maker’s risk attitude towards uncertainty in each of the 
individual attributes. The goal of MAUT is to construct a utility function of the form 

1 2 1 2( , ,..., ) ( , ,..., )K Ku v v v f v v v= , where kv  is the k-th attribute of concern.  

The process of evaluating even a two-attribute general utility function (K = 2) becomes quickly 
intractable, and in practice analysts have used much simpler forms of 1 2( , ,..., )Ku v v v . The most 
commonly used form is the additive utility function,  

 1 2( , ,..., ) ( )K k k k
k

u v v v w u v= ∑ , 

                                                 
37 An attribute in this context refers to the quantity and appropriate scale that measure the achievement of an 
objective. For example cost in dollars is a valid attribute if the objective is to minimize expected cost. 
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where ( )k ku v  is the single-attribute utility function for attribute k, and kw -s are the 
corresponding weights, which are all positive and sum to 1. This form requires strong 
assumptions of independence among attributes, which do not always hold. 

Applications 
Utility theory is used to capture the trade-offs and preferences of individuals or institutions in a 
coherent manner, particularly to make decisions under risk. The entire insurance industry is 
founded on the fact that most individuals are risk averse. Applications range from managing 
stock portfolios to determining insurance premiums. 

Strengths 
■ Utility functions systematically capture risk attitude of the decision maker in choices under 

uncertainty; 

■ Utility functions allow quantitative modeling of qualitative objectives; 

■ Multi-attribute utility functions can capture the relative importance of several objectives as 
well as their interactions. 

Weaknesses 
■ Constructing multi-attribute utility functions, except in the simplest form, is a very lengthy 

process to which few decision makers will submit. 
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Glossary 
Some of the following glossary entries were written to clarify the terms as they are used in this 
paper and ignore their broader interpretation. 

Additive Generally referring to relationships that exhibit no high order interaction or 
association. Additive models are of the form: 

    y = f 1 x1( )+ f 2 x2( )+  ... + f n x n( ) 
where each of the functions  f i ⋅( ) depends only on variable   x i . 

Analysis of 
Variance 

A technique for partitioning the variation in a continuous dependent 
variable(s) into variation due to the categorical or classification variables 
and variation due to random error. Analysis of variance may be written as a 
linear model to predict the dependent variable; model parameters are fit 
using a least squares method. Tests can be constructed to determine the 
significance of the classification variables.  

Artificial 
Intelligence  

A general term referring to those scientific fields concerned with the 
development of computer systems that exhibit “intelligent” behavior. 
Historically, artificial intelligence has included the fields of expert systems 
and knowledge-based systems. More recently, artificial intelligence has 
been broadened to include the fields of neural networks, genetic 
algorithms, fuzzy systems, case-based reasoning, artificial life, object-
oriented programming, virtual reality, and myriad other computer-based 
technologies. 

Association The relationship between two or more categorical variables in a 
crosstabulation. 

The chi-squared test may be applied to measure the strength of evidence 
that an association exists. Log-linear models (refer to section on Log-
Linear Models) allow one to test hypotheses about the level of association 
between variables. Other tests exist to measure the strength of an 
association.  

Association Rule A data mining term generally used in the context of a database of 
transactions, where the rules represent associations between data items. 
The presence of one set of items in a transaction implies the presence of 
other items with some specified degree of confidence.  

Attribute A specific value that a variable can take. e.g., in home ownership, “renter” 
is an attribute; “under 25” is an attribute of age. 

Bayesian Network A purely probabilistic graphical model which represents the joint 
probability distributions of variables as nodes, and variable dependencies 
as arcs between nodes. Also referred to as a probabilistic graphical model, 
a belief network and a Bayesian Belief Network (BBN). 

Binary Outcome The modeling situation where the dependent variable has only two values, 
e.g., response/no response, good/bad. 

Bivariate Relating to two variables. 
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Bootstrap Sample A bootstrap sample is a sample of size n drawn with replacement from 
some source sample of size n. Some of the observations in the sample will 
be in a given bootstrap sample and some will not. The probability that a 
particular observation will appear in a given bootstrap sample is 
approximately 63.2%. Bootstrap samples are used in many modeling 
technologies to obtain reliable prediction estimates, usually by averaging 
the estimates across the samples, especially in cases where only small 
samples are available. 

Categorical A variable is said to be categorical when its values are categories which are 
not necessarily ordered. For example, occupation is a categorical variable. 
Continuous variables such as applicant age may be made categorical or 
intervalized by converting the values to such as “under 20,” “20 - 30,” etc. 
Categorical variables may alternately be referred to as discrete, 
classification, qualitative or nominal variables. 

Chi-Square Test A statistical test that attempts to assess the significance of differences in 
the actual cell frequencies and the expected cell frequencies in a cross-
tabulation. Often called chi-square Goodness of Fit Test. 

Classification Referring to a family of techniques whose main objective is to generate 
functions to classify an outcome into one of two or more categorical 
outcomes as a function of a set of predictor variables. 

Conditional Referring to the observation or measurement of a phenomenon for a 
subgroup of cases with the value of one (or more) particular variable(s) is 
held constant. 

Confounding Referring to the condition where two ore more variables vary together in 
such a way that it is impossible to determine which variable is responsible 
for an observed effect. 

Conjoint Analysis Also referred to as feature trade-off analysis. A method for establishing 
respondents’ utilities based on the preferences they express for 
combinations of product attributes and features. Price is typically one of 
attributes included. 

Connection 
Weights 

Referring to the weight associated with a connection between two nodes in 
a neural network. The target node contains a summation function of some 
form to add up the connection weights of the arcs arriving at the target 
node from the source nodes. 

Continuous A variable is said to be continuous or quantitative if its values are real 
numbers such as age, income, amount purchased. 

Continuous 
Outcome 

The modeling case where the dependent variable has a continuum of 
values, e.g., revenue. 

Constrained 
Optimization 

A term referring to a branch of Operations Research where some objective 
has to be optimized (maximized or minimized) subject to some set of 
inviolable constraints. 
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Correlation The extent to which there is a straight line relationship between two 
variables. (i.e., to the extent to which income rises proportionately with 
age. The measure of correlation (the correlation coefficient) lies between -
1.0 and +1.0, with +1.0 indicating perfect positive correlation, -1.0 
indicating perfect negative correlation and 0 indicating the absence of a 
linear relationship. Specifically, correlation is covariance normalized by 
the product of the standard deviation of the two variables: 

    
ρ ij = Corr(xi , x j ) =

Cov(xi , x j )
Var (xi )⋅ Var (xj )

=
σ ij

σ ii ⋅ σ jj  
A correlation matrix is a matrix of all correlation coefficients for a set of 
variables taken two at a time. 

Covariance A measure of the extent to which two numeric variables are linearly 
related. More specifically, it indicates the difference between the mean of 
the product of two variables and the product of the means: 

    σ ij = Cov(xi , x j ) = E(x i ⋅ xj ) − E(xi ) ⋅E(x j ) = E(xi ⋅ x j ) − µ i ⋅µ j  
So if the values of xi and xj do not deviate too far from their respective 
means, the covariance of the two variables will also be small. If they 
deviate substantially, the covariance will be larger. Unlike correlation, 
magnitude of covariance is a function of the magnitudes of xi and xj. 
Covariance cannot indicate the degree to which the variables are related 
non-linearly. 

Cross-validation A method for estimating the reliability of a statistic generated from a small 
sample. In N-fold cross-validation, with n=1,...,N sample points, the 
statistic is computed N times from N-1 sample points; a different sample 
point is held out for each new computation. Similarly, in v-fold cross-
validation, the sample is divided into v subsets, and the statistic is 
computed N/v times; each time a different subset is held out from 
computation. If the sampling distribution of the statistic being estimated is 
approximately normally distributed, confidence intervals for the estimate 
of the statistic can be approximated using the n-fold or v-fold statistic 
computations. 

Data Mining The class of methods used to extract patterns from data. Data mining has 
evolved with the phenomenal growth in the size of databases and the need 
to extract or “mine” information from them. This area represents a 
convergence of the fields of machine learning and statistics. Primary tasks 
of data mining include classification, regression, clustering, dependency 
modeling, and pattern recognition. All of the data analysis and modeling 
techniques discussed in this paper fall under the umbrella of data mining. 
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Data Structure 
Assumptions 

Many statistical modeling techniques have specific data requirements. 
Some may involve the form of the data e.g., must be categorical, or some 
have distributional assumptions. For instance, Discriminant Function 
Analysis is based on the assumption of normality for all the predictor 
variables. (Violation of distributional assumptions does not immediately 
invalidate the use of a technique but requires extreme care on the part of 
the analyst.) 

Decision Variable A controllable variable whose value is determined by the application and 
whose value forms part of the solution to the problem being solved. 

Dependent Variable See outcome variable. 

Development 
Sample 

A part of a population used to estimate or train a model. See also, training 
sample. 

Dichotomous Having only two values. See also, binary. 

Dimension 
Reduction 

Attempt at reducing the number of variables in data analysis by eliminating 
those that have no bearing on the analysis or by creating combination 
variables from correlated variables where fewer combined variables 
represent most of the information of the large number of original observed 
variables. 

Directed Acyclic 
Graph 

A directed graph containing no cycles, commonly referred to as DAG 

Euclidean Distance Measure of geometric distance between two observations as measured by 
some function of the numerical values of the variables in the two 
observations. Specifically, the distance between an observation P with 
coordinates   p1 , p2 ,..., p n( ) and an observation Q with coordinates 

    q1 ,q2 ,..., qn( ) is: 

    d P, Q( )= p1 − q1( )2
+ p2 − q2( )2

+  ⋅⋅ ⋅  + pn − qn( )2

 

Extrapolation The prediction of the value of an outcome variable outside the measured 
range of values of the predictor variables. 

Feature A feature is any single valued transformation of an input vector of 
predictor variables. Suppose the input vector is composed of time series of 
bills and payments. Examples of features would include: the balance last 
month, the ratio of last month’s payment to last month’s balance, the 
indicator variable of the event, {max delinquency = 1}, and any 
polynomial or spline transformation of the input vector . A shallow 
regression tree developed from the inputs and outputs could also be a 
feature. 
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Generalized 
Additive Model 
(GAM) 

A modeling technology in which the score formula is represented by a sum 
of terms, where each term is a non-linear function of a single predictor 
variable. A fitting algorithm often associated with GAMs is the backfitting 
algorithm, which sequentially fits the non-linear functions to the data in a 
way that interactively decreases the model’s misfit. 

Goal Programming An optimization technique used in operations research which aims to 
optimize several objectives (goals) simultaneously. 

Gradient A vector of first partial derivatives of a function that is assumed to be 
differentiable at least once. 

Heteroscedasticity Refers to situations in which the variability of the model residuals is not 
constant. Most modeling procedures assume that the variability of the 
residuals is constant everywhere. If heteroscedasticity is observed, it may 
often be removed by transforming the outcome variable using a square root 
or a logarithm. 

Hidden Markov 
Model (HMM) 

Used for the stochastic modeling of non-stationary time-series data. An 
HMM can be regarded as a random generator of feature vectors. It consists 
of a set of states connected by probabilistic transitions. The model 
dynamically switches to a new state each time a new feature vector is 
observed. Every HMM consists of two key components: state transition 
probabilities that model the temporal correlation variability between the 
features vectors and output probabilities that model the characteristic 
variability of individual feature vectors. The power of HMMs results from 
the ability to combine the modeling of stationary stochastic processes 
producing observable features and the temporal relationships between these 
processes. 

Hold-out Sample A part of the population from which the development sample is drawn 
which is “held out” from the development and used as an independent 
check on results. Note that this is not independent in time from the 
development. Also referred to as a test sample or validation sample. 

Independent 
Variable 

See predictor variable 

Interaction An interaction between variables is said to occur when the effect of one 
predictor variable (categorical or continuous) on the dependent variable 
depends on the observed level of a second predictor variable. For instance, 
the relationship between age and log(odds) may be increasing for Owners, 
but decreasing for Renters. Interactions are generally difficult to capture in 
a strictly additive model without some generation of additional variables to 
represent the interaction information. 

Intervalized  See Categorical 
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Latent Semantic 
Indexing (LSI) 

A set of techniques for text processing. The distinguishing feature of this 
approach is that principal component analysis (PCA) is used to map a high-
dimensional space (where each distinct word defines its own axis) to a 
lower-dimensional space. The vectors for related words are close to one 
another, and the similarity between words or documents can be computed 
via the vector dot product operation. Also known as Latent Semantic 
Analysis (LSA). 

Learning Vector 
Quantization (LVQ) 

A supervised segmentation and classification technique developed by 
Teuvo Kohonen at the Helsinki University of Technology in the 1980s. 
Given a set of labeled training data, it learns a model for assigning class 
labels to data records. In brief, every data vector defines a point in a d-
dimensional data space. One or more prototype vectors per class are placed 
into the same space. To classify a feature vector, the Euclidean distance to 
all prototype vectors is measured, and the exemplar is assigned to the class 
of the nearest prototype vector. The prototype vectors are iteratively moved 
in response to training exemplars for which the classifier’s assignment 
disagrees with the training label. Specifically, the nearest prototype vector 
of the class that should have captured the exemplar is moved toward the 
training point. In some versions of the algorithm, the prototype vector that 
incorrectly captured the exemplar is also moved away from the training 
point. In practice, the learning process normally converges on a good 
solution rapidly 

Least Squares An estimation process which minimizes the squared difference between the 
predicted results and the actual results. Least squares estimation results are 
strongly influenced by outliers. 

Line Optimization Optimizing the objective function along a line. 

Linear Often referring to a straight line relationship between two variables. The 
relationship is generally characterized by a slope term and, in most 
instances, an intercept term as well. 

Linear Combination A method of generating a new variable from other variables by taking the 
sum of input variables each multiplied by some constant factor. For 
example, the variable z is a linear combination of w, x, and y: 

    z = 1. 20 ⋅w + 0.90 ⋅ x + 2.40 ⋅ y  

Main Effect The effect of one predictor variable on a dependent variable independent of 
any other predictor variable effects 
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Maximum 
Likelihood 
Estimation  
(MLE) 

Method of parameter estimation used in logistic regression and log-linear 
modeling. MLE is used to estimate the parameters in a model such that the 
likelihood of the sample, or its probability of occurrence, is maximized. 
Since there is generally no closed form solution for the maximum 
likelihood estimate of the parameters, an iterative estimation process using 
a stop criterion is applied (several different computational methods exist). 
In instances of nominal predictor variables, this is equivalent to 
minimizing the Log Likelihood Ratio statistic across cells: 

    
G2 = −2 ⋅ Observed( )⋅ log e

Expected
Observed

 
 
  

 
 

 
 
 

 
 
 ∑

 

Misclassification 
Cost 

The cost of misclassifying a class “j” object as a class “i” object. The costs 
may vary across object classes, e.g., the cost of misclassifying a “Bad” as a 
“Good” may be higher than the reverse. 

Missing Values Rarely does every field in every sample point have a valid value. In some 
cases, where the original data is captured from hard copy records, data is 
illegible, lost, never recorded and so for any particular sample point, 
variables may have missing values. Some techniques handle this very 
poorly (to the extent that data might have to be discarded). Others can 
finesse around this by substituting values (such as minimum or average). 
Others (INFORM is probably unique with the No Inform concept) handle it 
appropriately. 

Multicollinearity The situation where two or more of the independent variables are very 
highly correlated. 

Multidimensional Observations having multiple variables whose values help distinguish one 
observation from another. Often referred to as multivariate.  

Multinomial Having more than two possible values. 

Multivariate See multidimensional. 

Nominal Variable Variable having values which are categorical and in no implied order. For 
example, the variable “residence” with values “own” and “rent” is nominal 
because its values cannot be ordered without further information on what 
the ordering should be. Compare against ordinal or continuous. 

Non-additive See interaction. 

Non-linear Usually referring to a relationship between two variables that varies more 
than just linearly over different regions of data. Characterization of this 
type of relationship takes more parameters than just slope. Usually, fairly 
complex functions are used to represent the non-linear shape of the 
relationship. For example: 

    
f (x ) =

1
(1+ e−x )  
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Non-parametric 
Method 

A method which makes no assumptions about the type of distribution from 
which the data came. 

Objective Function The formal statement of goal to be optimized by a mathematical 
programming optimization algorithm. 

Odds The ratio of frequency of occurrence two possible outcomes: 

    
odds = outcome1 :outcome2 =

outcome1

outcome2  

Optimization 
Algorithm 

A set of rules applied in a finite number of steps for identifying an 
(approximate) optimal solution to a stated objective function in terms of 
one or more decision variables. The problem may or may not be subject to 
a set of constraints on the decision variables. 

Ordinal Variable Variable which is categorical and whose values are ordered but without 
any implied distance between the values. Many survey responses are 
ordinal (answer between ‘1’ for worst and ‘5’ for best but not necessarily 
meaning ‘5’ is five times better than ‘1’). 

Outcome Variable  The variable of interest to be modeled or predicted. Synonymous with 
performance, dependent, or criterion variable. 

Outlier Referring to an observation or case that lies so far outside of an expected 
pattern (e.g., very far from the fitted regression line) as to prompt further 
investigation into the possible problems with the observation itself or even 
with the “expected pattern.” 

Overfitting See Sample Tuning 

Performance 
Inference 

An attempt at guessing the probability distribution of an unknown 
dichotomous outcome variable for a group of accounts where such 
outcome has no chance of being measured. Good examples are good/bad 
outcome on declined applicants and response/no-response outcome on non-
mailed names in a list. 

Predictor Variable The known items of information which are used to predict or estimate the 
values of the unknown or independent variables. See also, independent 
variable. 

Probabilistic 
Graphical Model 

See Bayesian Network. 

Regression Referring to a family of techniques whose main objective is to generate 
functions to predict, in most cases, some continuous outcome as a function 
of a set of predictor variables. 

Ridge Regression A regression technique in which the regression coefficients are biased 
toward zero in order to reduce sample tuning. 

Sample Noise Random variation exhibited in data that is unlikely to be repeated in other 
samples drawn from the same source and is not representative of any actual 
underlying population phenomena. See related item, sample tuning. 
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Sample Tuning Sample tuning or overfitting refers to a pitfall of most modeling techniques 
which occurs when spurious relationships are identified which are not part 
of the underlying structure. A simple example might be where because of a 
small sample size, a relationship is identified in the data which isn’t 
representative of the full population to which the solution will be applied. 
Note that taking large samples or census data do not obviate the need for 
engineering the solution to fit the future application. Judicious use of a 
holdout sample for cross validation and an alert analyst can usually avoid 
this danger. 

Score Formula The mathematical formulation of the scoring function. The score formula 
has parameters (regression coefficients, score weights, connection weights, 
etc.), which define the score and are determined by some fitting algorithm 
applied to a development sample. 

Sensitivity Analysis A tool of quantitative risk analysis for testing the effect of varying 
parameters in a model either singly or in combination to assess their effect 
on outcome. Analysis tools for apportioning the variation in the model to 
its sources include correlation coefficients, rank correlation and regression 
analysis. 

Simulated 
Annealing 

An optimization algorithm that attempts to find a good solution by random 
variations of the current solution. The search tries to avoid local minima by 
jumping out of them in early iterations. When the probability of accepting 
a worse solution nears zero, the algorithm seeks the bottom of its local 
minimum. This technique stems from thermal annealing, which attempts to 
obtain perfect crystallizations by a slow enough temperature reduction to 
give atoms the time to attain the lowest energy state. 

Test Sample See hold-out sample. 

Training Sample See development sample. 

Uncertainty 
Analysis 

A tool of quantitative risk analysis used to generate empirical histogram 
distributions for the outcome of a model, by means of sampling from the 
set of model input variables. Can be computationally intensive. 

Weibull Distribution The Weibull distribution is one of the most commonly used lifetime 
distributions in reliability engineering. It can take on the shape of other 
distributions, depending on the value of its shape or slope parameter. 
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Weight-of-Evidence Quality index for a piece of information that indicates the strength of the 
information towards predicting the level of some binary outcome variable. 
The specific definition is the natural log of the ratio of the conditional 
probability of having an attribute given one outcome level over the 
conditional probability of having the attribute given the other outcome 
level: 

    
WoEi = log e

P attributei outcome1( )
P attributei outcome2( )

 

 
  

 

 
  

 
For example: 

    
WoEowner = log e

P owner good( )
P owner bad( )
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