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1.    Introduction 

Time series (TS) data refers to observations on a variable that occur in a time sequence. 

Mostly these observations are collected at equally spaced, discrete time intervals. When 

there is only one variable upon which observations are made then we call them a single 

time series or more specifically a univariate time series. A basic assumption in any time 

series analysis/ modeling is that some aspects of the past pattern will continue to remain in 

the future. Also under this set up, the time series process is based on past values of the 

main variable but not on explanatory variables which may affect the variable/ system. So 

the system acts as a black box and we may only be able to know about ‘what’ will happen 

rather than ‘why’ it happens.  So if time series models are put to use, say, for instance, for 

forecasting purposes, then they are especially applicable in the ‘short term’. Here it is 

assumed that information about the past is available in the form of numerical data.  

Ideally, at least 50 observations are necessary for performing TS analysis/ modeling, as 

propounded by Box and Jenkins who were pioneers in TS modeling. 

 
 

2.   Time Series Components and Decomposition 

An important step in analysing TS data is to consider the types of data patterns, so that the 

models most appropriate to those patterns can be utilized. Four types of time series 

components can be distinguished. They are  

(i) Horizontal − when data values fluctuate around a constant value 

(ii) Trend − when there is long term increase or decrease in the data 

(iii) Seasonal − when a series is influenced by seasonal factor and recurs on a regular 
periodic basis 

(iv) Cyclical − when the data exhibit rise and falls that are not of a fixed period 
 

Many data series include combinations of the preceding patterns. After separating out the 

existing patterns in any time series data, the pattern that remains unidentifiable form the 

‘random’ or ‘error’ component.  Time plot (data plotted over time) and seasonal plot (data 

plotted against individual seasons in which the data were observed) help in visualizing 

these patterns while exploring the data. A crude yet practical way of decomposing the 

original data (ignoring cyclical pattern) is to go for a seasonal decomposition either by 

assuming an additive or multiplicative model viz. 

 

Yt = Tt + St + Et   or Yt = Tt . St . Et , 

 

where  

Yt -  Original TS data 

Tt -  Trend component 

St –  Seasonal component 

Et –  Error/ Irregular component 
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If the magnitude of a TS varies with the level of the series then one has to go for a 

multiplicative model else an additive model.  This decomposition may enable one to study 

the TS components separately or will allow workers to de-trend or to do seasonal 

adjustments if needed for further analysis. 

 
 

3.   Moving Averages and Exponential Smoothing Methods 
 

3.1   Simple Moving Averages 

A Moving Average (MA) is simply a numerical average of the last N data points. There 

are prior MA, centered MA etc. in the TS literature. In general, the moving average at 

time t, taken over N periods, is given by 

 

N

Y...YY
M 1Nt1tt]1[

t
+−− +++

=  

 

where Yt is the observed response at time t.  Another way of stating the above equation is  

 

Mt
[1]
 = Mt−1

[1]
 + (Yt−Yt−N ) / N   

At each successive time period the most recent observation is included and the farthest 

observation is excluded for computing the average. Hence the name ‘moving’ averages. 

 

3.2   Double Moving Averages 

The simple moving average is intended for data of constant and no trend nature. If the data 

have a linear or quadratic trend, the simple moving average will be misleading. In order to 

correct for the bias and develop an improved forecasting equation, the double moving 

average can be calculated. To calculate this, simply treat the moving averages Mt
[1]
 over 

time as  individual data points and obtain a moving average of these averages. 

 

3.3   Simple Exponential Smoothing (SES) 

Let the time series data be denoted by Y1, Y2,…,Yt.  Suppose we wish to forecast the next 

value of our time series Yt+1 that is yet to be observed with forecast for Yt denoted by Ft.  

Then the forecast Ft+1 is based on weighting the most recent observation Yt with a weight 

value α and weighting the most recent forecast Ft with a weight of (1-α) where α is a 
smoothing constant/ weight between 0 and 1. Thus the forecast for the period t+1 is given 

by 

 

( )ttt1t FYFF −α+=+  

 

The choice of α has considerable impact on the forecast. A large value of α (say 0.9) 

gives very little smoothing in the forecast, whereas a small value of α (say 0.1) gives 

considerable smoothing. Alternatively, one can choose α from a grid of values (say 

α=0.1,0.2,…,0.9) and choose the value that yields the smallest MSE value. 
 

If the above model is expanded recursively then Ft+1 will come out to be a function of α, 

past yt values and F1. So, having known values of α and past values of yt our point of 
concern relates to initializing the value of F1. One method of initialization is to use the 

first observed value Y1 as the first forecast (F1=Y1) and then proceed.  Another possibility 
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would be to average the first four or five values in the data set and use this as the initial 

forecast.  However, because the weight attached to this user-defined F1 is minimal, its 

effect on Ft+1 is negligible.   

 

3.4   Double Exponential Smoothing (Holt) 

This is to allow forecasting data with trends. The forecast for Holt’s linear exponential 

smoothing is found by having two more equations to SES model to deal with – one for 

level and one for trend.  The smoothing parameters (weights) α and β can be chosen from 

a grid of values (say, each combination of α=0.1,0.2,…,0.9 and β=0.1,0.2,…,0.9) and then 

select the combination of  α and β which correspond to the lowest MSE. 
 

3.5   Triple Exponential Smoothing (Winters) 

This method is recommended when seasonality exists in the time series data. This method 

is based on three smoothing equations – one for the level, one for trend, and one for 

seasonality. It is similar to Holt’s method, with one additional equation to deal with 

seasonality. In fact there are two different Winter’s methods depending on whether 

seasonality is modeled in an additive or multiplicative way. 

 
 

4.   Stationarity of a TS process 

A TS is said to be stationary if its underlying generating process is based on a constant 

mean and constant variance with its autocorrelation function (ACF) essentially constant 

through time.  Thus, if different subsets of a realization are considered (time series 

‘sample’) the different subsets will typically have means, variances and autocorrelation 

functions that do not differ significantly.   

 

A statistical test for stationarity is the most widely used Dickey Fuller test. To carry out 

the test, estimate by OLS the regression model  

 

            y't = φyt -1 + b1y’t -2 +…+ bpy’t -p  
 

where y't  denotes the differenced series (yt -yt -1).  The number of terms in the regression, 

p, is usually set to be about 3. Then if φ is nearly zero the original series yt needs 

differencing and if φ <0 then yt is already stationary.   
 
 

5.   Autocorrelation Functions 
 

5.1  Autocorrelation  

Autocorrelation refers to the way the observations in a time series are related to each 

other and is measured by the simple correlation between current observation (Yt) and 

observation from p periods before the current one (Yt−p ). That is for a given series Yt, 

autocorrelation at lag p = correlation (Yt , Yt−p ) and is given by 
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It ranges from −1 to +1.  Box and Jenkins has suggested that maximum number of useful 
rp are roughly n/4 where n is the number of periods upon which information on Yt is 

available.    

 

5.2  Partial Autocorrelation  

Partial autocorrelations are used to measure the degree of association between Yt and Yt-p 

when the Y-effects at other time lags 1, 2, 3,…,p-1 are removed.  

 

5.3  Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF) 

Theoretical ACFs and PACFs (Autocorrelations versus lags) are available for the various 

models chosen. Thus compare the correlograms (plot of sample ACFs versus lags) with 

these theoretical ACF/ PACFs, to find a reasonably good match and tentatively select one 

or more ARIMA models. The general characteristics of theoretical ACFs and PACFs are 

as follows:- (here ‘spike’ represents the line at various lags in the plot with length equal to 

magnitude of autocorrelations) 

 

Model ACF PACF 

AR Spikes decay towards zero Spikes cutoff to zero 

MA Spikes cutoff to zero Spikes decay to zero 

ARMA Spikes decay to zero Spikes decay to zero 

 
 

6.   Description of ARIMA Representation  
 

6.1  ARIMA Modeling 

In general, an ARIMA model is characterized by the notation ARIMA (p,d,q) where, p, d 

and q denote orders of auto-regression, integration (differencing) and moving average 

respectively. In ARIMA, TS is a linear function of past actual values and random shocks. 

For instance, given a time series process {Yt}, a first order auto-regressive process is 

denoted by ARIMA (1,0,0) or simply AR(1) and is given by 
 

Yt  = µ  + φ1Yt-1 + ε t    
                                                     

and a first order moving average process is denoted by ARIMA (0,0,1) or simply MA(1) 

and is given by  
 

Yt  = µ  - θ 1 ε t-1 + ε t        
                                                                                         

Alternatively, the model ultimately derived, may be a mixture of these processes and of 

higher orders as well. Thus a stationary ARIMA (p, q) process is defined by the equation 
 

 Yt = φ1Yt-1+φ2Yt-2+…+ φpYt-p - θ1εt-1 - θ 2 εt-2-…-θq ε t-q + ε t      
                             

where εt’s are independently and normally distributed with zero mean and constant 

variance σ 2 for t = 1,2,...n.  The values of p and q, in practice lie between  0 and 3. 
 

6.2  Seasonal ARIMA Modeling 

Identification of relevant models and inclusion of suitable seasonal variables are 

necessary for seasonal modeling and their applications, say, forecasting production of 

crops. Seasonal forecasts of production of principal crops are of greater utility for 
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planners, administrators and researchers alike. Agricultural seasons vary significantly 

among the states of India. For example, Tamil Nadu has unique three-season cropping 

pattern for paddy crop whereas two-season paddy rules elsewhere in the country. Thus 

seasonal forecasts of crop production can also be made using seasonal ARIMA models. 

 

The Seasonal ARIMA i.e. ARIMA (p,d,q) (P,D,Q)s model is defined by 

 

φp (B)∅P (B
s
) ∇ d ∇s 

D
 Y t = ΘQ (B

s
) θq (B) ε t ,                                   

 

where  

φp (B) = 1 - φ1B-….-φpB
 p
,   θ q (B) = 1-θ1B-…-θqB

q
 

 

∅P (B
s
) = 1-∅1 B

s
-…-∅P B

sP
 , Θ Q (B

s
) = 1- Θ1 B

s
-…-ΘQ B

sQ
 

 

B is the backshift operator (i.e. B Yt= Yt-1, B
2
Yt  = Yt-2 and so on), ’s’ the seasonal lag and  

‘ε t’ a sequence of independent normal error variables with mean 0 and variance σ
2
. ∅'s 

and φ's are respectively the seasonal and non-seasonal autoregressive parameters. Θ's and 

θ's are respectively seasonal and non-seasonal moving average parameters. p and q are 
orders of non-seasonal autoregression and moving average parameters respectively 

whereas P and Q are that of the seasonal  auto regression  and moving average parameters 

respectively.  Also d and D denote non-seasonal and seasonal differences respectively.   

 
 

7.    The Art of ARIMA Model Building 
 

7.1  Identification   

The foremost step in the process of modeling is to check for the stationarity of the series, 

as the estimation procedures are available only for stationary series. There are two kinds 

of stationarity, viz., stationarity in ‘mean’ and stationarity in ‘variance’. A look at the 

graph of the data and structure of autocorrelation and partial correlation coefficients may 

provide clues for the presence of stationarity. Another way of checking for stationarity is 

to fit a first order autoregressive model for the raw data and test whether the coefficient 

‘φ1’ is less than one. If the model is found to be non-stationary, stationarity could be 
achieved mostly by differencing the series.  Or use a Dickey Fuller test (see section 4).  

Stationarity in variance could be achieved by some modes of transformation, say, log 

transformation. This is applicable for both seasonal and non-seasonal stationarity. 

Thus, if ‘X t’ denotes the original series, the non-seasonal difference of first order is 
  

 Yt = Xt – Xt-1     

                                                              

followed by the seasonal differencing (if needed) 
  

 Zt = Yt – Yt—s = (Xt – Xt-1) – (Xt-s  – Xt-s-1)    

                               

The next step in the identification process is to find the initial values for the orders of 

seasonal and non-seasonal parameters, p, q, and P, Q.  They could be obtained by looking 

for significant autocorrelation and partial autocorrelation coefficients (see section 5.3).  

Say, if second order auto correlation coefficient is significant, then an AR (2), or MA (2) 

or ARMA (2) model could be tried to start with. This is not a hard and fast rule, as sample 

autocorrelation coefficients are poor estimates of population autocorrelation coefficients. 
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Still they can be used as initial values while the final models are achieved after going 

through the stages repeatedly. 

 

7.2  Estimation 
At the identification stage, one or more models are tentatively chosen that seem to provide 
statistically adequate representations of the available data. Then precise estimates of 
parameters of the model are obtained by least squares as advocated by Box and Jenkins.  
Standard computer packages like SAS, SPSS etc. are available for finding the estimates of 
relevant parameters using iterative procedures.  
 

7.3  Diagnostics 

Different models can be obtained for various combinations of AR and MA individually 

and collectively. The best model is obtained with following diagnostics: 

 

7.3.1 Low Akaike Information Criteria (AIC)/ Bayesian Information Criteria (BIC)/ 

Schwarz-Bayesian Information Criteria (SBC) 

AIC is given by AIC = (-2 log L + 2 m) where m=p+ q+ P+ Q and L is the likelihood 

function.  Since -2 log L is approximately equal to {n (1+log 2π) + n log σ
2
} where σ

2 

is the model MSE, AIC can be written as AIC={n (1+log 2π) + n log σ
2
 + 2 m}and 

because first term in this equation is a constant, it is usually omitted while comparing 

between models.  As an alternative to AIC, sometimes SBC is also used which is 

given by SBC = log σ
2 
+ (m log n) /n. 

 

7.3.2  Non-significance of auto correlations of residuals via Portmonteau tests (Q-tests 

based on Chisquare statistics)-Box-Pierce or Ljung-Box texts 
After tentative model has been fitted to the data, it is important to perform diagnostic 
checks to test the adequacy of the model and, if need be, to suggest potential 
improvements.  One way to accomplish this is through the analysis of residuals. It has 
been found that it is effective to measure the overall adequacy of the chosen model by 
examining a quantity Q known as Box-Pierce statistic (a function of autocorrelations 
of residuals) whose approximate distribution is chi-square and is computed as follows: 

   

   QQQ   ===   nnn   ΣΣΣ    rrr2
22
   (((jjj)))   

      

where summation extends from 1 to k with k as the maximum lag considered, n is the 

number of observations in the series, r (j) is the estimated autocorrelation at lag j; k 

can be any positive integer and is usually around 20.  Q follows Chi-square with (k-

m1) degrees of freedom where m1 is the number of parameters estimated in the model.  

A modified Q statistic is the Ljung-box statistic which is given by 
   

   QQQ   ===   nnn(((nnn+++222)))   ΣΣΣ    rrr2
22
   (((jjj)))   ///    (((nnn−−−jjj)))      

   

The Q Statistic is compared to critical values from chi-square distribution. If model is 

correctly specified, residuals should be uncorrelated and Q should be small (the 

probability value should be large). A significant value indicates that the chosen model 

does not fit well. 

 

All these stages require considerable care and work and they themselves are not 

exhaustive.  
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EXERCISE 
 

 

(a)    Identify a series of ARIMA (p,1,q) models (p, q ranging from 0 to 5) that might be 

useful in describing the following time series data.  Which of your models is the best 

according to their AIC values?   

(b)    For the best model perform diagnostic tests upon residuals using (i) ACF of forecast 

errors, (ii) Portmanteau tests    

(c)   Write this model in terms of backshift operator and then without using backshift 

operator. 

(d)    Forecast for ten lead periods ahead.    

 

 

 

Steps for Analysis using SPSS 

 

Data Entry 

 

 
 

• Define time series data 

• Here seasonality parameter s is 12, since there are 12 months in each season that is 

year 

• Go to data  

• Then define date as follows: 

Year Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

1981 562 599 668 597 579 668 499 215 555 586 546 571 

1982 634 639 712 621 621 675 501 220 560 602 626 605 

1983 646 658 712 687 723 707 629 237 613 730 734 651 

1984 676 748 816 729 701 790 594 230 617 691 701 705 

1985 747 773 813 766 728 749 680 241 680 708 694 772 

1986 795 788 889 797 751 821 691 290 727 868 812 799 

1987 843 847 941 804 840 871 656 370 742 847 731 898 

1988 778 856 938 813 783 823 657 310 780 860 780 807 

1989 895 856 893 875 835 934 832 300 791 900 781 880 

1990 875 992 976 968 871 1006 832 345 849 913 868 993 
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Click                    →      →   
 

 

 
 

 

• Put the initial year and month like 1989 and 1 for the month of January 

 

 
 

 

Data Date Year, Month 
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• Then go to graph to check Stationarity 

 

 
 

 

• Select line and values 
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• For the present example the graph would look like this: 
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• Which shows clearly that the series is not stationary and there is seasonal variation 

• We apply difference and seasonal difference once   

• For that go to transform MENU and select Create time series. 

 

  

 
 

 

• Created new variable SDIFF (Y_1,1,12) should now  be tested for stationarity 
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• On the same line as before we get the graph as below: 
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• It seems that data is now stationary.   

• Now check for ARIMA (p, d, q) 

• Go to graph →time series → auto correlations.. 
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• See the ACF and PACF 
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• Determine p and q on the basis of the following table: 

 

Type of model Typical pattern of ACF Typical pattern of PACF 

AR(p) Decays exponentially or with 

damped sine wave pattern or 

both 

Significant spikes through lags p 

MA(q) Significant spikes through lags q Declines exponentially 

ARMA(p,q) Exponential decay Exponential decay 

 

� Similarly determine P and Q ( Seasonal components) 
� For the present case q=1, p=0 d=1, D=1, P=1 and Q=0 
 

 

• Go to Analyse → time series → ARIMA. 
 

 
 

• Model is fitted 

• Observe the AIC or SBC values for the present model 

• Fit different models in the neighborhood of p and q 

• Observe the AIC or SBC values for all these models 

• Choose the model on the basis of least AIC or SBC value 

• For diagnostic check see the ACF and PACF of the errors of the fitted model 
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• In the present case the ACF and PACF are lying within the limits. 

• So the present model is fitted well. 

• The final model is: ARIMA (0, 1, 1) (1, 1,0)
12
 

• The model can be written as 
 

(1− 12Bφ ) (1− B )(1− 12B ) Yt= (1−  Bθ ) te  
 

where Yt is the study variable at t
th
 time period, te is the error term, B is the back shift 

operator, that is, B  Yt = Yt-1, 
12B  Yt = Yt-12 and so on. The parameter estimates θ  

(Seasonal MA(1) component) is 0.811 and φ  (Nonseasonal AR(1) component) is – 

0.431. 
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